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EXECUTIVE SUMMARY 

In this report, we investigate and exploit the properties of distance metrics 
in hyperspectral processing to achieve superior algorithm performance as well as 
dimension reduction. Distance metrics are mathematical operators that provide a 
scalar measure of similarity for two hyperspectral (vector) signals, and they are at 
the nucleus of many application algorithms. The similarity between two signals, 
however, can be measured by various means, and different distance metrics offer 
distinct notions of similarity. Consequently, a thorough understanding of the math- 
ematical and physical properties of distance metrics is crucial to the accurate and 
efficient processing of hyperspectral data. 

After formally introducing the mathematical definitions and properties of dis- 
tance metrics, we focus on two distance metrics that frequently appear in hyper- 
spectral processing and provide complementary interpretations of distance in high- 
dimensional space. The Euclidean Minimum Distance (EMD) measures the shortest 
distance between two spectra, whereas the Spectral Angle Mapper (SAM) measures 
the angle created by the two spectra. After enumerating their properties and demon- 
strating how each appears in several detection, classification, and unmixing algo- 
rithms, we focus on SAM because of its widespread use, and its unique mathematical 
and physical properties. 

A simple example demonstrates how the angle between two spectra changes as 
subsets of different bands are retained and omitted. This inherent property of SAM 
entertains the possibility of increasing the angle between two spectra, and hence their 
discriminability, by selecting an appropriate subset of available bands. Simple search 
algorithms are explored to find the contiguous segment (s) of bands that maximize 
the angle between two spectra, but these approaches are highly sub-optimal, as well 
as computationally impractical. However, an analytical approach (Band Add-On or 
BAO) based on a mathematical decomposition of SAM incrementally "builds up" a 
set of bands that maximize the angle between two spectra. This approach compares 
very favorably against the results of exhaustively enumerating every angle between 
two spectra, which is computationally impractical for hyperspectral signals. 

The BAO approach is then extended to select bands that increase the angu- 
lar separation between two classes of spectra, where each class is populated by a 
set of reference spectra. This scenario strongly parallels the material identification 
problem, where a small number (< 10) of laboratory reflectance measurements are 
collected to provide a signature for a material, and the goal is to assign an unknown 
pixel spectrum measured by a sensor to one of many material classes. Two comple- 
mentary band selection techniques based on BAO are developed that select bands 
and template spectra to increase the angular separation between two such classes of 
spectra. Their ability to discriminate two very similar target classes is tested using 
laboratory and sensor data collected with the HYDICE sensor. Our experimental 
results using real data show that using all available bands in an angle-based test 
misclassifies half the pixels, but band selection succeeds in correctly classifying all 

m 



pixels while using only a fraction of the available bands. 
This two-class discrimination technique provides the fundamental unit for a 

multi-class, hierarchical architecture for material identification, which generalizes 
the standard, linear architecture that sequentially measures the angle between an 
unknown pixel and every library template spectra using all bands collected by the 
sensor. The basic kernel of the hierarchical approach is a binary test that compares 
an unknown pixel to two classes at a time using a set of bands and template spectra 
unique to the two classes. The class having the greater angle is eliminated from 
further consideration, and another binary test is performed with the retained class 
and a new class, using a new set of bands and templates. Employing 10 similar 
target classes, the results from the hierarchical architecture using two different band 
and template selection approaches are compared to the linear architecture using all 
bands. The band selection approaches clearly yield better classification performance 
than using all bands, while only using a small fraction of bands. 

Other benefits of angle-based band selection are also discussed. Statistical 
target detection algorithms are designed to distinguish desired target pixels from 
natural background pixels. Examples demonstrate that detection statistics from 
similar targets, which are common in CC&D environments, are difficult to differen- 
tiate from the desired target. Band selection for material identification can provide 
detection post-processing that mitigates false alarms that arise from pixels that are 
similar to the desired target spectrum, yet are still different. Further, the exam- 
ples generated in this report demonstrate that significant improvement in material 
identification performance results with a dramatic reduction in the number of bands 
utilized. This form of dimension reduction has the potential to reduce the require- 
ments for future sensors, especially those striving for real-time performance. 
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1.    INTRODUCTION 

Much of the challenge in modern sensing technologies focuses on techniques to efficiently 
process increasingly vast amounts of data. The flood of data can arise from either temporal mea- 
surements of one or a few quantities with rapidly dwindling re-visit times, a whole assortment of 
parameters estimated at one instant, or from both of these circumstances. Intuitively, an improve- 
ment in algorithm performance commensurate to the increase in input data might be anticipated, 
but no axiom guarantees that such a scaling always holds. 

Passive sensing has followed this progression, originating from single, wide-band measure- 
ments to strategically placed bands in multispectral processing, to hyperspectral sensing where 
large intervals of the electromagnetic spectrum are measured in contiguous bins having widths as 
narrow as 3 nm. The explosion of data is occurring along the axes of spectral and spatial reso- 
lution as well as temporal frequency. For example, Figure 1 compares the bands from Landsat 7, 
which was launched in 1999, to the coverage of hyperspectral sensors in the reflective regime such 
as AVTRIS (Airborne Visible/Infrared Imaging Spectrometer) and HYDICE (Hyperspectral Digital 
Imagery Collection Experiment). Accompanying the increased capability of collecting spectral in- 
formation has been a growing demand to measure quantities of interest in even greater detail than 
before, as well as to derive altogether new information products. In either case, the potential for 
extracting useful information from hyperspectral data is immense, but the realization of this goal 
does not reside solely in the expanding volume of data, but in the techniques employed to process 
it. 

Figure 1. Comparison of hyperspectral and Landsat spectral coverage. Band 6 extends from 10400 nm to 
12500 nm. The HYDICE sensor has 210 bands with widths ranging from 3-11 nm. The AVIRIS sensor has 
224 bands with widths of 10 nm. 



1.1    WHY ARE DISTANCE METRICS IMPORTANT? 

Hyperspectral data processing is one of a multitude of scientific endeavors that extrapolates 
meaningful information from numerical data. Algorithms are developed for useful applications that 
automate basic tasks that humans are unable to do in a timely fashion. Considering that space- 
based platforms have become standard implements for persistent civilian and military monitoring of 
the Earth, the amount of data being constantly collected far exceeds the human resources necessary 
for processing and analysis. Hence, the development of successful algorithms must achieve two goals. 
First, an algorithm must yield accurate and verifiable answers. At the same time, however, it must 
deliver these results using a minimum of data and with maximum computational efficiency. 

Hyperspectral applications are varied and have been designed to satisfy different criteria 
(e.g., least squared error (LSE), maximum likelihood (ML), maximum a posteriori (MAP)) to meet 
their goals. In doing so, the approaches may utilize different variables and computational kernels. 
However, most algorithms share one critical component at their core: an operator 
known as a distance metric that mathematically quantifies the similarity between two 
spectra. For example, in target detection, the comparison occurs between a desired spectral 
signature and a pixel spectrum collected by a sensor from a scene. The result of the distance 
metric is compared to a threshold. 

Distance metrics should not be confused with the features they compare. Each band in 
a spectrum is, by itself, a feature, but a distance metric provides the means of comparing two 
sets of bands. Similarly, when comparing two people, different features can be employed (e.g., 
height, weight, eye color). Individual features can be compared by their associated metrics to 
provide discrimination (e.g., height 1 - height2). However, provided all features can be expressed 
numerically, the means for comparing two sets (or vectors) of disparate features is not as clear. 
Consequently, the selection of an appropriate distance metric is crucial. This report explains what 
distance metrics have been employed for hyperspectral processing, and by virtue of developing a 
strong mathematical foundation for comparing two physical spectra, we discover opportunities to 
substantially improve upon the two aforementioned objectives of algorithm design for hyperspectral 
processing, improved performance and more efficient computation. 

1.2    HYPERSPECTRAL ALGORITHMS 

The principle end products from the processing of military hyperspectral data are derived 
from four categories of algorithmic processing: 1) target detection, 2) classification, 3) spectral 
unmixing, and 4) material identification. For each of these categories, distance metrics provide 
algorithms the core capability of discriminating one class of signal from another. For instance, 
in the detection of known targets, a distance metric compares a pixel spectrum collected from 
a scene by a hyperspectral sensor to a reference, or library, spectrum, and based on the scalar 
measure of distance and a user-defined threshold, deems the pixel to be either of the same type 
as the reference spectrum or from a different class. Likewise, unsupervised classification strives 
to naturally segregate data into distinct classes, and distance metrics enable the comparisons of 
individual spectra with class centroids. Unmixing also employs a distance metric to estimate the 



sub-pixel components that comprise the measured spectrum from a pixel. In this case, squared- 
error is the quantity that is frequently minimized. Finally, material identification of a pixel is 
accomplished by a distance metric that compares a received pixel spectrum with a series of template 
spectra in a spectral library, and assigns the pixel to the material class having the smallest distance. 

1.3 CONTRIBUTIONS TO HYPERSPECTRAL PROCESSING 

In addition to a structured, analytical explanation of distance metrics used in hyperspectral 
processing, this report outlines several tangible benefits that arise from exploiting the mathematical 
and physical properties of the most commonly used distance metric, the Spectral Angle Mapper 
(SAM), which will be discussed in detail later in this report. 

• Band Selection 

The mathematical structure of SAM directly reveals how a subset of hyperspectral bands 
may be selected to improve the discriminability of two classes of targets. Experiments have 
shown that a significantly lower number of bands can provide better separability than using 
every available band from a hyperspectral sensor. 

• Improved Material Identification/Classification for CC&D 

As a consequence of selecting bands that increase the capability of distinguishing one class 
from another, the ability to correctly classify the material composition of a pixel is also 
enhanced. This has important ramifications for material identification, classification, and 
detection of CC&D targets. 

• Dimension Reduction/Real-Time Processing 

Our results demonstrate that superior performance can be achieved using significantly fewer 
bands than are available from the sensor. This has the potential of reducing the requirements 
on sensor design and algorithmic processing. For certain, important applications, band selec- 
tion may be performed off-line, permitting fast and efficient real-time processing using only 
a subset of the data collected by the sensor. 

1.4 IN THIS REPORT 

This project report provides a detailed technical discussion of distance metrics in hyperspec- 
tral processing, metric-based band selection, and applications toward material identification, sta- 
tistical target detection, and dimension reduction. Section 1 motivates the importance of distance 
metrics as a way of comparing two spectra measured by a sensor. It also discusses how distance 
metrics are at the core of many common application algorithms, and that their proper use and 
optimization can significantly improve the performance of important hyperspectral applications. 

Section 2 introduces formal, mathematical definitions for quantities that are important to the 
study of distance metrics. After providing a definition for distance metrics, two distance metrics 
commonly used in hyperspectral processing, the Spectral Angle Mapper (SAM) and the Euclidean 



Minimum Distance (EMD), are introduced and their properties are enumerated. The roles played 
by SAM and EMD in common hyperspectral applications such as unmixing, classification, and 
detection are shown. 

In Section 3, the idea of band selection to improve algorithm performance is discussed. Knowl- 
edge of the spectral intervals where phenomenology is observable has been the principle form of 
band selection. However, while this approach identifies the appropriate spectral interval, it does not 
optimize the performance of mathematical algorithms that may ultimately process the data. The 
complementary concept of selecting bands to mathematically optimize a distance metric, namely 
SAM, is introduced, with the goal of increasing the angular separation between two spectra to 
improve the performance of algorithms based on that metric. Simple examples demonstrate that 
the sub-angles measured between two spectra can vary as different bands are selectively retained 
and omitted. In Section 3.3 and Section 3.4, primitive search algorithms are investigated to find 
contiguous segments of bands that increase the sub-angle between two spectra. These methods, 
however, are grossly inefficient. In Section 3.5 an analytical decomposition of SAM provides the 
foundation for a band selection algorithm that rapidly selects bands that maximize the angular 
separation between two spectra. A graphic description of the Band Add-On (BAO) technique is 
provided with examples. The results of the different band selection algorithms are compared to 
answers determined by exhaustive evaluation of all possible sub-angles, conclusively demonstrating 
that the BAO technique is able to rapidly find sub-angles that exceed, sometimes significantly, the 
angle created using all available bands. The sensitivities of the BAO approach are discussed. 

Section 4 extends the BAO concept to increase the angular separability between two classes 
of spectra, where each class may consist of several sample spectra. The strong parallelism of this 
scenario to the material identification problem in hyperspectral processing is noted, where the goal 
is to classify an unknown reflectance spectrum into one of several library classes that are each 
defined by multiple laboratory reference spectra. Two complementary philosophies for selecting 
bands, both based on the BAO approach, are proposed. The Average Distance Method (ADM) 
selects bands to maximize the average angular distance between the spectra in the two classes. The 
Minimum Distance Method (MDM) selects bands with the goal of maximizing the angle between 
the members of each class that are the most similar, thus maximizing the worst-case angle between 
the two classes. 

The task of accurately discriminating between two similar target classes is explored in Section 
4.4 with the motivation that many CC&D targets possess very similar spectra. Real laboratory 
reflectance measurements as well as sensor data collected by the HYDICE sensor are used. The 
traditional approach that uses all available bands (in this case there are 145 available bands) fails 
to correctly discriminate the pixels. However, MDM correctly classifies pixels from both classes, 
while only using 20 bands. 

In Section 5, the methods used to increase the angular separability and classification perfor- 
mance for two classes is extended to a hierarchical architecture suitable for material identification 
with an unlimited number of spectral classes. A classification experiment having ten similar classes 
is conducted and the results from band selection using ADM and MDM are compared to the re- 
sults generated by using all available bands. The results demonstrate that ADM and MDM provide 
superior classification performance using significantly fewer bands. 



In Section 6, the applicability of the procedures developed in Section 5 and Section 4 are 
demonstrated toward the task of mitigating false alarms in statistical target detection. Further, 
the benefits of band selection are discussed in the context of reducing the dimension of hyperspectral 
data. 



2.    DISTANCE METRICS 

Hyperspectral sensing derives a strong foundation from the passive observation of physical 
phenomena that are active in the area being imaged. More often than not, algorithms for process- 
ing hyperspectral data are essentially attempting to unravel, or unwrap, the parameters of these 
phenomena from data and manipulate them in a way that results in acceptable performance. The 
physical parameters of interest, however, have been corrupted by numerous sources of interference 
(e.g., atmospheric, sensor) and distorted by limitations in viewing (e.g., spectral and spatial res- 
olution, adjacency, quantization, focal plane defects). The idea of "looking backwards" from the 
data to "see" the phenomenology is not new and has been studied in the form of inverse problems 
for many years [42,43]. 

In this section, we present analytical explanations of two distance metrics that are commonly 
used in hyperspectral processing [23]. In essence, a distance metric is a mathematical operator 
that conveys how similar two (possibly vector-valued) members of a set are with a single, scalar 
value, based on a notion of similarity. Different metrics employ alternative notions of similarity, 
and, consequently, each metric uniquely translates the phenomenology. In this sense, a metric is 
well-suited to a problem when it is matched to, and exposes, the aspect of the underlying physics 
that the application algorithm seeks to exploit. Before exploring this further, however, we present 
some mathematical definitions that provide a theoretical context for distance metrics. 

2.1    MATHEMATICAL PRELIMINARIES 

In order to discuss the properties of distance metrics in hyperspectral processing, we first 
present definitions that provide a foundation for further discussion and analysis. While a strong 
mathematical background is not a prerequisite for comprehending the results of this report, these 
concepts formalize the arguments. Rigorous discussions of these arguments may be found in any 
mathematical text on real analysis [31]. 

Definition: Linear Space. A linear space (or a vector space) consists of a set Cl, a field 
F, and two functions + : Q. x Q, -► Q, and •:J?xS]^f!) where we denote +(x, y) by x + y and 
•(a,x) by ax, such that the following conditions are satisfied for all x,y,z € 0, and a,ß € F: 

a) x + y = y + x. 

b) x + (y + z) = (x + y) + z. 

c) There exists a 0 € O such that x + 0 = x. 

d) There exists -xGfi such that x + (—x) = 0. 

e) a(/3x) = (a/?)x. 

f) a(x + y) = ax + ay. 

g) (a + /3)x = ax + ay. 



h) 1 • x = x. 

Here, the field, F is called the field of scalars, + vector addition, and ■ scalar multiplication. 

For hyperspectral sensing, the set, ft, corresponds to the M-dimensional vector space of real 
numbers, heretofore denoted as 3?M (where M is the number of spectral bands), that describes the 
vector of entries (reflectance or radiance) from one pixel. In fact, reflectance and radiance values 
are inherently non-negative real numbers, but subsequent manipulations can lead to values from 
the entire real number line. The properties confirm for two vectors, x, y G 3?M the commutative, 
associative, and distributive properties of addition as well as multiplication by a scalar, and the 
existence of additive inverses and identities. The next definition demonstrates the notion of length 
for a vector in UM. 

Definition: Norm, Normed Space. Let ft be a linear space. A function || || : ft -> &, 
whose value at x is written as ||x||, is said to be a norm on ft if it satisfies the following conditions 
for all x, y e ft and a € F. 

a) I Ml > 0, with equality if and only ifx = 0. 

b) \\ax\\ = H||x||. 

c;i|x + y||<||x|| + ||y||. 

J/H  || is a norm on ft, then the pair (ft, ||  ||) is called a normed space. 

A linear space that is normed conforms to properties that guarantee that the norm (or length) 
of a vector, x, may only be zero if x = 0 and that scalar multiplication of x may travel outside the 
norm operator. The third condition is an obvious property of vector geometry that guarantees the 
sum of the lengths of two vectors is greater than or equal to the length of the sum. Equality holds 
when the two vectors are parallel. 

Finally, a distance metric that is induced by a norm provides a notion of closeness or similarity 
for two members of KM. The definition is as follows. 

Definition: Distance Metric, Metric Space. Let ft be a set. A function d : ft x ft -» 3J 
is said to be a distance metric on ft if it satisfies the following conditions for all x, y, z G ft: 

a) d(x, y) > 0, with equality if and only ifx = y. 

b)d(x,y) = d(y,x). 

c)d(x,z) <d(x,y) + d(y,z). 

The first condition for a distance metric is intuitive. All distances must be non-negative. 
The second condition requires the operator to yield the same value independent of the order of the 
operands. Finally, the third, and perhaps most important property of normed spaces is given by 
the triangle inequality. Essentially, the distance between two points in a normed space must be less 
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Figure 2. Spectra for two vehicles (water vapor bands removed). 

than or equal to the sum of the distances between the first point and an intermediate point and 
the second point and the intermediate point. Equality is only met by choosing the intermediate 
point to reside on the line connecting the two points. This characteristic is an important property 
that will be highlighted in subsequent sections. 

2.2    TWO DISTANCE METRICS 

Consider the reflectance spectra for two different targets in Figure 2. Clearly, they are visually 
different in both shape and amplitude. The notion of similarity shared by the spectra can be 
measured differently, depending on the metric that is used to compare them. In this section, we 
discuss the two most prominent distance metrics in hyperspectral processing: the Spectral Angle 
Mapper (SAM) and the Euclidean Minimum Distance (EMD). Each metric provides a unique 
measure of distance from two complementary viewpoints of Euclidean geometry. 

2.2.1    An Important Caveat About Hyperspectral Data 

It is important to note that although the two spectra in Figure 2 are plotted on a two- 
dimensional plane, with reflectance as a function of wavelength, the two metrics do not perform 
their calculation in this plane. Instead of interpreting a reflectance spectrum as samples from a 
continuous parametric curve, r(Xi),i = 1,...,M, where M is the number of bands, SAM and 
EMD interpret the spectral reflectance values as coordinates for a vector in a high-dimensional 
space, r(Ai,..., AM)- For simplicity, the discussion of the metrics will refer to notional diagrams 
in three-dimensional space (see Figure 3). However, it is important to understand that SAM and 



Metric 

Equation 

Values 

Invariance 

Additivity 

Monotonicity 

SAM 

fl(x,y) = arccos(g^) 

0<6>< \ 

Multiplicative scaling 
No 

No 

EMD 

A(x,y) = |jx-y| 

0< A<oo 

Rotational 

Yes 

Yes 

TABLE 1. Summary of properties of SAM and EMD 

EMD perform their comparison in a high-dimensional environment having as many dimensions 
as spectral bands and representations such as Figure 2 are convenient for illustration purposes. 
Metrics that compare spectra as parametric curves (r(Ai)) are a different area of spectral analysis, 
which are not considered in this report. 

2.2.2    Spectral Angle Mapper (SAM) 

Figure 3(a) depicts a pair of three-dimensional spectra and indicates the angle, 9, created by 
them that SAM quantifies. For two M-dimensional spectra, x and y, 6 is given by the following 
analytical expression: 

0(x,y) = arccos(44ir-r)> o<e<* 
-    - 2 (1) 

where < -, • > is the dot product operator, and || • || is the 2-norm which may be written using 
the dot product operator as V< v > [15]. From its mathematical definition in (1), SAM possesses 
unique properties that distinguish it from EMD. These are enumerated here. 

Invariance to Multiplicative Scaling:    The angle measured by SAM is invariant to mul- 
tiplication of x and y by scalars, a, b <E 3?: 

d(ax, by)   =   arccos(-i]— ,       ) 
IMIIIftyll 

,ab< x,y > 
arccos( _LII   [[n   „ ) 

=   *(x,y). 
«&IM|||y|| 

(2) 

This property is apparent by examination of Figure 3(a). Multiplication of a vector by a scalar 
simply increases its extent in a particular direction, but it does not alter the angle it creates with 
another vector. 

What impact does this invariance have on hyperspectral processing? Although all objects 
have a distinct reflectance spectrum, the recovery of accurate reflectance estimates from hyper- 
spectral measurements can be complicated by numerous factors.   Atmospheric compensation is 
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(a) (b) 

Figure S. (a) Spectral Angle Mapper (SAM), 6, (b) Euclidean Minimum Distance (EMD), A. 

the procedure that is applied to the radiance measurements collected by a hyperspectral sensor 
to recover the intrinsic reflectance values for each pixel in a scene. However, reflectance estimates 
that are recovered using atmospheric compensation algorithms such as ATREM can only estimate 
spectra within a multiplicative constant. In order to obtain the real reflectance value, knowledge of 
the terrain slopes and aspect angles with respect to the sensor must be known so that the effective 
surface area seen by a sensor within a pixel is known exactly [13]. 

This type of uncertainty, or variability, can be seen in Figure 4. Plotted in blue are the spectra 
of pixels taken from the same vehicle in a single scene when imaged by the HYDICE sensor. Plotted 
in red are a collection of reference measurements taken from the same target at close range by a 
hand-held spectroradiometer. There is a significant variation in both, but the reflectance spectra 
seen by the HYDICE sensor show a distinct variability that resembles an unknown multiplicative 
scaling. The variability evident in Figure 4 can sabotage an automated recognition system unless it 
is designed to be invariant to such behavior. Thus, if SAM is used to classify an unknown pixel as 
belonging to one of many reference classes, its invariance to multiplicative (or near-multiplicative) 
scaling is a considerable benefit in light of the real-world behavior of hyperspectral signals. 

Non-Additivity: Another important property possessed by SAM is that it is a non-additive 
distance metric. To explore this subject, we introduce a useful definition [9]. 

Definition: Non-Additive Distance Metric. Let x and y be two length-M vectors in 
3£M. Let the elements o/x and y be partitioned in such a way that x = [xa x&] and y = [ya yb], 
where M -a + b and xa, ya € 3fta and x6,ybeUb. Then, a distance metric, d(-, •), is non-additive 
when d(x,y) ^ d(xa,ya) + d(x6,y&). 

SAM is a non-additive distance metric. This may be demonstrated by using the same termi- 
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nology from the definition stated above. Letting 0(x,y) correspond to the SAM angle using all the 
elements in x and y, we can re-express (1) in terms of the angle between xa and yQ, 9a, and x6 and 
yfc, Ob- 

cos0(x,y)   =    <Xy > 
K'Y) l|x||||y|| 

_ <xa,ya> + <x6,yb> 

VllxalP + INivilyalP + INI2 

<xQ,yQ> 1 + ^^ 

Hxa|ll|ya||     /1 + |MP,/l+ME 

1+ <x^yi-> 
cos ea 

<Xa'ya> 

IMF 
(3) 

The consequence of this expansion is that cos(Ö) is expressible as a function of cos(0a) and a 
multiplicative factor which is a function of (xQ, yB) as well as (x6, y6). Clearly, 0(x, y) ^ 0(xa, ya) + 
0(x&,y&)> and, therefore, SAM is a non-additive distance metric. 

Non-Monotonicity: Another property of SAM is that it is a non-monotonic distance met- 
ric. We again introduce another definition that is applicable to distance metrics. 

Definition: Monotonie Distance Metric. A distance metric, d(-, •), is monotonic if its 
value must increase monotonically as the dimension of its operands, x and y, increase. 

By examining (3), it is clear that the right term on the right-hand side may be greater or 
less than one, depending on the values in xa,ya,xb,yb. Thus, the addition of more spectral bands 
does not always guarantee an increase in angular separability. Hence, SAM is a non-monotonic 
distance metric. In conjunction with the fact that SAM is also non-additive, the fact that SAM is 
non-monotonic will also be exploited for band selection in later sections of this report. 

2.2.3    Euclidean Minimum Distance (EMD) 

In contrast, Figure 3(b) shows that EMD measures the shortest distance between two vectors, 
x,y 6 3JM, and is defined as 

A(x,y)    =    ||x-y|| 
M 

A £(** - Vif- (4) 

From the definition of EMD in (4), EMD possesses properties that make it distinct from SAM. 
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Figure 4. Spectra of pixels derived from the same vehicle in one scene imaged by the HYDICE sensor (blue). 
Reference measurements made of the same target by a hand-held spectroradiometer (red). 

Invariance to Unitary Coordinate Transformation: Given a unitary M x M matrix, 
?7M,A(Ux,Uy) = A(x,y). 

When does this invariance become useful in hyperspectral processing? Coordinate transforma- 
tions in the spectral domain do not occur naturally in normal hyperspectral imaging environments. 
Moreover, a unitary transformation of coordinates can lead to negative values in the transformed 
domain (Ux), which is impossible for reflectance and radiance values. 

Additivity: Although A is not an additive distance metric, A2 is an additive cost metric. 
Let x and y be two vectors in KM. Let the elements of x and y be partitioned in such a way that 
x = [xo x6] and y = [ya y6], where M = a + b and xa, ya € W

1 and x6, y6 G 3?fc. Then A2 can be 
decomposed as 

M 

A2(x,y)   =   5>i-yi)2 

iea i€b 

=   A2(xa,ya) + A2(x6,y6). 

(5) 

(6) 

(7) 
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Monotonicity: By examining (4) it is evident that an addition of bands to x and y cannot 
decrease EMD. In other words, additional, non-zero spectral bands necessarily lead to an increase 
in the distance metric. Therefore, EMD is monotonic. 

2.3    SAM AND EMD IN HYPERSPECTRAL PROCESSING 

Most algorithms for detection, classification, and unmixing utilize SAM or EMD as the metric 
that compares two spectra. Previous efforts to develop hierarchical taxonomies of algorithms for 
hyperspectral processing demonstrate that the metric utilized by an algorithm is a prominent 
feature that discriminates one class of algorithms from another [24,29]. In this section we discuss 
several important application algorithms in hyperspectral processing and the distance metrics upon 
which they are built. 

Before proceeding, we review a model that is frequently used to describe the synthesis of 
a single pixel from distinct endmembers in the scene. The equation for the linear mixing model 
(LMM) is given by: 

p 

x = ^2 aksk + w = Sa + w /8\ 
fc=i 

where x is the M x 1 received pixel spectrum vector, sk is the fc-th M x 1 column of S, a is the 
P x 1 fractional abundance vector, w is the M x 1 additive observation noise vector, S is the 
M x P matrix of endmembers whose columns are sfc, M is the number of spectral bands, and P 
is the number of endmembers. The two constraints imposed on a are (1) Y*=i ai = h and (2) 
ai>0,i = l,...,P. 

2.3.1    Spectral Unmixing 

In spectral unmixing the objective is to estimate endmembers and abundances from a mixed 
pixel. The procedure consists of three steps: 

Dimension reduction: Reduce the dimension of the data in the scene. This step is optional and 
is only invoked by some algorithms to reduce the computational load of subsequent steps. 

Endmember determination: Estimate the distinct spectra, or endmembers, that constitute the 
mixed pixels in the scene. 

Inversion: Estimate the fractional abundances of each mixed pixel from its spectrum and the 
endmember spectra. 

There are numerous algorithms in the literature that perform one or more of these stages. For 
dimension reduction, principal component analysis (PCA) applies an eigendecomposition to the co- 
variance of a set of pixels to identify the orthogonal axes in *RM where most of the energy in the pixels 
resides. A key property of the resulting eigenvector and eigenvalue pairs, {uj.AJ.i = 1,...,M, 
is that they are ordered (i = 1,.. .,M) so that any truncated subset provides the best average 
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approximation of a pixel having the same statistics (fj,,T), and this approximation is measured by 
EMD. Let x be a Q-term {Q < M) approximation to x given by 

x = /i + V^ Uj < x - //, Uj > . (9) 
i=l 

Then, the average error in the approximation, E[||x-x||]2, is minimized over all possible collections 
of Q vectors. Hence, PCA possesses properties directly linked to the optimization of EMD [44]. 

Another method of dimension reduction that has been developed for use with real-time hy- 
perspectral data collection platforms is part of the Naval Research Laboratory's ORASIS (Optical 
Real-time Adaptive Spectral Identification System), which is a series of hyperspectral processing 
modules [7,8]. In the Exemplar Selector Module (ESM), when a new pixel is collected from the 
scene by the sensor, its spectra is compared to the existing set of exemplars (the first pixel in a 
scene automatically becomes the first exemplar). This comparison is performed by SAM, and if the 
new pixel exceeds an angular threshold with every exemplar, it is added to the collection. This set 
of exemplars is periodically orthogonalized to yield a basis which is used to reduce the dimension 
of the data before it undergoes further analysis. Similar to PCA, where EMD plays a prominent 
role, SAM is the distance metric that is used to regulate the admission of pixels into the set of 
exemplars. 

Furthermore, we can identify an important class of unmixing algorithms where EMD plays 
a prominent role. Many inversion algorithms estimate abundances that minimize a least-squares 
criterion [24,28]. Given a mixed pixel, S, and a set of endmembers organized in a matrix, S, 
least-squares-based inversion algorithms estimate a set of abundances, ä, that minimize ||x— Sa||. 
Once again, EMD plays the role of comparing the estimated pixel, Sä, with the original pixel, x. 

2.3.2 Classification 

A frequently used tool for classifying pixels in a scene into distinct, homogeneous classes is 
clustering. For example, algorithms based on if-means clustering identify natural partitions in data 
based on distinct statistical behavior. The fundamental instrument for assigning and re-assigning 
pixels to classes is the measurement of pairwise similarity between pixels and the centroids of each 
class. This measurement is frequently performed by EMD, and numerous variations on this form 
of clustering have been attempted, all using a distance metric based on EMD [6,11]. 

2.3.3 Statistical Target Detection 

Finally, we can examine a large suite of statistical detection algorithms that have been pro- 
posed to detect targets. These algorithms detect targets occurring with low probability amid 
background and provide the basis for estimates of probabilities of detection (PD) and false alarm 
(PFA) as a function of relevant operating parameters (e.g., number of bands, SNR, etc.). The 
mathematical expressions for the detectors originate from formulations of a binary hypothesis test 
for a single pixel, where one hypothesis, HO, assumes no target is present, and the other hypothesis, 
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HI, supposes a target exists, 

HO:       x   = S{,a6 + w /1Q\ 

= v 

HI:       x   = s( + Sbab + w n-n 

= st + v. 

Here, S6 is a matrix of background endmembers, ab is the vector of background abundances, and 
st is the desired target spectrum. The additive noise is given by w and in most cases is assumed 
to be Gaussian. 

Three common detectors for unstructured backgrounds [29] are the Generalized Likelihood 
Ratio Test (GLRT) [21], the Adaptive Coherence Estimator (ACE) [26,27], and the Adaptive 
Matched Filter (AMF) [34]. For a desired target signature, st> the GLRT is given by 

To™M     =     ^V^      <     » (12) 

Here, Tv 
1 is the inverse of the non-normalized estimated covariance from N pixels that are presumed 

to be target-free and zero-mean. 

N 

rt = Jx(ji)x(nf. (13j 
n=l 

If we perform a symmetric factorization, we can write T'1 = WTW and rewrite (12) as 

T        (x)        = |sfWTWxl2 

°LRT{ ' (sfW^Wst)(l + x^Wx) 

[<Wst,Wx>|2 

(< Ws4, Ws( >)(1+ < Wx, Wx >)' (14) 

We can see from (14) that the GLRT closely resembles the form of the mathematical definition 
of cos 6 in (1). The notable difference is that the spectra being compared, x and st, are transformed 
by the M x M matrix, W. The other difference is the second term in the denominator, which 
contains a one in addition to the inner product. This accounts for the fact that the estimate of the 
covariance that gives rise to W increases in accuracy as N -► oo. If N -► oo, this term approaches 
unity, and the GLRT reduces to 

|sTp-lx|2 
TAMF{X) = M\y <15> 

Under the condition that N -> oo, the expression in (15) yields a detector known as the Adaptive 
Matched Filter (AMF). If, however, N is relatively small, the inner product in the second term of 
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the denominator in (14) will dominate, resulting in the following detector: 

TACEW       -    (<Ws()Wst>)(<WXlWx>)- {    } 

This detector is known as the Adaptive Coherence/Cosine Estimator (ACE), and without unity 
in the denominator of (12), (16) is clearly the squared-cosine of the angle created by whitened 
versions of st and x. Further, in the unlikely case that the background covariance is uncorrelated, 
i.e., tv = I, then W = I, and (16) simplifies to a pure measure of the squared-cosine, 

Hence, many of the common statistical detectors used for target detection in hyperspectral 
processing are built from the measurement of the angle between a test pixel and a reference signature 
spectrum. The presence of the estimated background covariance induces a coordinate stretching 
and rotation, but the essential measurement is still angular. Furthermore, the range of values 
produced by TGLRT{X.),TACE(X), and TSAM(*) is identical, [0,1]. 

2.4    OTHER DISTANCE METRICS 

We have introduced concepts from mathematics for the purpose of specifically defining what 
properties a distance metric should have. For hyperspectral processing, two metrics that obey 
these properties have been been borrowed from Euclidean geometry, SAM and EMD. Both have 
relatively intuitive interpretations, and we have shown that these metrics provide the cornerstone 
for a large number of algorithms in hyperspectral processing. 

The obvious question is whether there are other functions that are useful for comparing 
two spectra in hyperspectral processing? The answer is "yes", but they have not gained as much 
acceptance and credibility as SAM or EMD. This may be because the function is not as intuitive, or 
because it does not have any physically meaningful properties, as SAM does. In other cases, distance 
measures have been proposed, but they do not meet the criteria for a metric. For instance, the 
I-divergence compares two non-negative deterministic functions and yields a non-negative measure 
of dissimilarity having a value of zero when the functions are identical [40]. For two non-negative 
vectors of length M, x and y, the I-divergence is defined by 

M r       -| M 

I(xfy) = 5>ln   ^   -$>-*)■ (18) 

Simple substitution reveals that J(x, y) ^ I(y, x) and hence, I is not a distance metric. However, 
this fact alone does not disqualify it from being useful. The three properties of a distance metric 
are desirable, but not absolutely necessary. 

While distance metrics provide the foundation for mathematically establishing the distance 
between two spectra, there are also numerous statistical measures that quantify the distance be- 
tween two classes of spectra, when the intra-class variability is expressed using a covariance.  In 
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their own way, these statistical measures of distance between two classes assign a scalar measure 
of similarity to two classes. Numerous distance measure have been exploited in all areas of signal 
processing, pattern recognition, and cognitive science [4]. For example, the Bhattacharyya coeffi- 
cient [20], p, is often cited as a measure of the similarity between two Gaussian classes, Xi and 
X2, each defined by means and covariances, (pi, £1) and (/i2, £2), respectively. It is a special case 
of the Chernoff measures that provide upper and lower bounds on the probability of error when 
classifying signals originating with equal probability from both classes: 

-B p(Xi,X2)   =   e'~ (19) 

B   -   ItaW^rV^Hi.nÄ (20) 

From (19), 0 < p < 1. Since p = 1 when Xi = X2, the Bhattacharyya coefficient does not 
satisfy the triangle inequality, but y/l-p does. Although there is a similar geometric logic to 
statistical distance measures as there is to distance metrics for deterministic signals, we will not 
discuss statistical measures of distance in this report. 
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3.    METRIC-BASED BAND SELECTION 

We begin this section by discussing how a priori knowledge of phenomenology has influenced 
the design requirements for current sensors. Hyperspectral sensors are designed to collect measure- 
ments in intervals where exploitable phenomenology exists. For example, sensors collecting data for 
ocean color remote sensing do not collect data beyond approximately 800nm because there is little, 
if any, reflected light at higher wavelengths. Likewise, similar arguments for the detection of mixed 
gases and camouflaged targets have driven the spectral requirements for sensors (e.g., lowest wave- 
length, highest wavelength, spectral resolution). Motivated by this knowledge of physics, the entire 
spectral range of collected data is often processed by algorithms with little, if any, consideration to 
the mathematical properties of the algorithms. 

In Section 2, we introduced two distance metrics, SAM and EMD, and enumerated their 
properties, highlighting the places where they are similar and different. In contrast, we consider 
an opposite methodology for processing hyperspectral data. Recalling that most hyperspectral 
algorithms are based on one of two metrics, we investigate the idea of processing only specific 
subsets of bands collected by a sensor (and hence, rejecting the remainder), based purely on the 
optimization of the distance metric being utilized. As a benchmark, we compare the performance 
of the subset of bands to identical processing performed using every available band. 

3.1    PHYSICS-BASED BAND SELECTION 

As discussed in Section 1.2, virtually all applications capitalize on exposing some type of 
contrast that exists between (at least) two classes of signals. Knowledge of where contrast resides, 
spectrally, and what spectral resolution is necessary to reveal it, can drive the design specifications 
of sensors. For example, ocean color remote sensing collects measurements in spectral regions 
where the relevant physical processes are observable. The Sea-viewing Wide Field-of-view Sensor 
(SeaWiFS) sensor developed by NASA and launched in 1997 was designed to provide quantitative 
data on global ocean bio-optical properties to the Earth science community [18]. The sensor has 
eight channels, spanning from 402nm to 885nm with channel widths ranging between 20nm and 
40nm. The bands do not provide complete coverage between 402nm to 885nm, and the bands do 
not overlap spectrally. They were chosen to capitalize on specific intervals of spectral activity due 
to pigments whose relative quantities can be correlated with the presence of phytoplankton. 

Similarly, the recognizable spectral features of gaseous effluents in mixed gases are present 
principally in the longwave infrared, and because telltale absorption bands are relatively narrow, 
longwave sensors collect data in bands that are sufficiently narrow to allow accurate chemical "fin- 
gerprinting." As in the case of ocean sensors, specific knowledge of the phenomenology directly 
impacts the sensor requirements. Figure 5 demonstrates how disparate intervals of the electromag- 
netic spectrum are exploited for different applications. 

In many cases, however, where the goal is to distinguish objects having different spectral 
properties, such specific physical knowledge is unavailable, although, visual inspection can easily 
see that the spectra are dissimilar. Figure 2 demonstrates this scenario. In such a situation, the 
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Figure 5. Hyperspectral applications and their associated spectral interval (courtesy SITAC). 

20 



correct choice of a distance metric is vital for several reasons. First, the metric determines what 
feature shared by the two spectra is to be scrutinized and quantified. If the distance metric is unable 
to capture the distinguishing feature, then the two spectra will not be distinguished. Conversely, 
the distance metric should ignore features that would incorrectly register a large distance if both 
spectra are from the same class. The latter case can be exemplified by SAM, which is invariant to 
multiplicative scaling, and can commonly arise in normal imaging scenarios. 

3.2    BAND SELECTION TO INDUCE PHENOMENOLOGY 

In contrast to physics-driven band selection, we now investigate selecting bands for processing 
based on their ability to optimize a cost function, namely the distance metrics discussed in Section 
2, SAM and EMD. This approach works with the understanding that band centers and widths 
have already been determined by the sensor design. The goal is to optimize the distance metric 
that distinguishes two spectra by selecting only a subset of the available bands. As such, the 
distance metric is the foundation for identifying contrast that distinguishes two classes of signals. 
The greater the value of the distance metric, the more contrast that exists to be exploited. 

We can consider a situation where this is useful. A binary test using a distance metric, 
d(-, •), compares an unclassified pixel spectrum, r, with template spectra representing two classes 
U,i = 1,2, to determine which spectrum it more closely resembles. If, for example, r is from the 
first class, and there is no noise, r will exactly match one template, i.e., d(r,ti) = 0. However, 
in realistic scenarios, noise will prevent an exact match from occurring, and the distance between 
r and both template spectra will invariably be non-zero, i.e., d(r,ti) > 0,d(r,t2) > 0. However, 
the greater the contrast between ti and t2, the more assurance that the binary test will not be 
corrupted by noise. Thus, optimizing the distance metric to yield greater contrast creates more 
robustness to distortions, and better application performance. 

In Table 1, the properties of SAM and EMD are summarized and compared side-by-side. 
We can conclude, based on the monotonicity of EMD discussed in Section 2.2.3, that the contrast 
between two signals increases with the number of bands. Furthermore, the additivity of EMD 
confirms that the amount of contrast between two signals increases with additional bands indepen- 
dent of the value of other bands. In short, the greatest contrast between two spectra is necessarily 
achieved by using every band collected by the sensor. 

SAM, however, is neither monotonic nor additive. This combination of properties indicate 
that the value of SAM, and hence the contrast derived from it, does not necessarily increase as more 
bands are added. In fact, by examining (3), it is clear that the value of SAM can either decrease 
or increase as more bands are added. This can be clearly demonstrated in the simple example of 
two length-3 vectors, x and y, that are plotted in Figure 6 and given by 

x=[130],y = [021]. (21) 

Using all three bands, 0(x,y) = 31.95°. If however, we exclude the second band in both vectors, 
the two-element vectors become orthogonal, and the angle immediately goes to 90°. Table 2 
summarizes the value of the resultant angle for all possible combinations of bands in (21). 
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Band number 

Figure 6. Plot of two three-dimensional spectra, x = [1 3 0] and y = [0 2 1]. 

Bands Angle 
All 31.95° 

{1,2} 18.43 

{1,3} 90.00 

{2,3} 26.57 

TABLE 2. SAM angle value for all possible angles created by the vectors x = [1 3 0] and y = [0 2 1]. 
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There are several implications that can be derived from the simple example summarized in 
Table 2. 

• Different subsets of bands yield different angular values. 

• Using all available bands does not necessarily provide the largest angular separation between 
two spectra. 

• Spectral features that yield high angular separability are not immediately obvious from plots, 
such as Figure 6. 

We will refer to an angle that is created from a subset of bands as a sub-angle, and we will refer to 
the angle created using all available bands as the complete angle. Thus the greatest sub-angle for 
x and y in Figure 6 is defined by bands 1 and 3. 

Finally, the remainder of this report focuses on methods for band selection that optimize 
SAM. In addition to having a useful invariance to multiplicative scaling, SAM is the most widely 
used distance metric in hyperspectral processing. Like SAM, EMD provides a useful interpretation 
for distance, but its utility is limited for practical comparisons of spectra. The properties of non- 
monotonicity and non-additivity lead to a more complex mathematical interpretation, but the 
benefits will be shown to be worthwhile. 

3.2.1 The Mathematics of M-Dimensions 

In Section 3.2, we learned that sub-angles may exist that are larger than the complete angle 
between two spectra, possibly providing greater contrast and separability than the complete angle. 
The key to exploiting the capabilities described in the simple example in Figure 6 and Table 2 is 
to have a thorough understanding of the behavior of vector signals, or spectra, in high dimensions, 
or hyperspace. Despite the fact that most properties of angles and geometric surfaces in higher 
dimensions are straightforward extensions of concepts in two and three dimensions, the concepts 
are difficult, if not impossible, to visualize. Moreover, employing mathematical notation necessary 
to maintain clear and unambiguous bookkeeping is not simple. Nevertheless, the mathematics of 
high dimensions have been explored by several mathematicians and statisticians [22,41]. 

3.2.2 Hyperspectral Data in High Dimensions 

In Section 2.2.1 we stated an important caveat about the difference between interpreting a 
spectrum as a two-dimensional plot of radiance or reflectance, indexed by wavelength, versus a 
vector located by axes in a high-dimensional space by each reflectance or radiance value. We are 
exclusively retaining this latter interpretation of a spectrum for all subsequent calculations and 
results. For a pair of three-dimensional spectra, as given in Figure 6, there were three sub-angles 
consisting of two bands, and one complete angle consisting of three bands. Thus, the total number 
of possible angles is four. 

Before generalizing the number of possible angles for a pair of M-dimensional signals, we 
should provide another definition. We will refer to a sub-angle created by k bands as a ft-angle. For 
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M 

10 

20 
50 
100 

150 
200 
500 

1000 

1-angles 

10 

20 
50 

100 

150 

200 
500 
100 

2-angles 

45 
190 

1225 

4950 

11175 

19900 

124750 
499500 

5-angles 

252 

15504 

2118760 

75287520 

591600030 
2.536 x 109 

2.552 x 1011 

8.25 x 1012 

10-angles 

1 

184756 

1.027 x 1010 

1.731 x 1013 

1.170 x 1015 

2.245 x 1016 

2.456 x 1020 

2.634 x 1023 

Total number 
of sub-angles 

1013 

1048555 

1.126 x 1015 

1.268 x 1030 

1.427 x 1042 

1.607 x 1060 

3.273 x 10150 

1.072 x 10301 

TABLE 3. Number of k-angles and total number of sub-angles for different values ofM. 

a sub-angle to exist, there must be a minimum of two bands. Hence, provided two M-dimensional 
signals, x and y, the total number of sub-angles is the number of unique, length-M, binomial 
sequences [35] (2M) minus the number of sequences having 0 or 1 selected bands (M + 1). The 
total number of unique Wangles, where A; = 2,..., M, is (^) = p^L_. Consequently, the number 
of sub-angles, l(M), (including the complete angle) is 

Z(M) = 2M-(M + 1). (22) 

Table 3 tabulates the total number of /c-angles and sub-angles for different values of k and M based 
on (22). A typical hyperspectral sensor, such as HYDICE, has 210 total bands providing coverage 
from 400nm - 2500nm. Approximately 145 bands remain after bands corrupted by water vapor 
absorption are discarded. Prom Table 3, the number of sub-angles is approximately 1042. 

3.2.3    Strategies for Band Selection 

The expression in (22) and the results in Table 3 demonstrate that the number of sub- 
angles between two spectra of average length is humongous, larger than would be rational for an 
exhaustive search of every combination of bands to find the biggest sub-angle. Nor, is there any 
known analytical solution for identifying the biggest sub-angle from two spectra. The alternative 
is to select bands sub-optimally, yet with the hope that the resulting sub-angle provides a superior 
capability to discriminate two spectra under realistically imperfect conditions. 

We will discuss several types of band selection algorithms that maximize the angular sep- 
aration between two spectra by exploiting the mathematical structure of SAM. No approach is 
guaranteed to identify the biggest possible angle, but the performance of sub-optimal band selec- 
tion will be compared to the logical benchmark, which is the performance obtained using all bands 
(the complete angle). Only this will determine whether any form of band selection, optimal or 
sub-optimal, actually yields superior algorithm performance. 

Inasmuch that band selection algorithms we investigate do not formally incorporate physi- 
cal phenomenology, through the optimization of the distance metric they selectively induce phe- 
nomenology into the mathematical analysis by the bands they choose. Quite often the band selec- 
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tion will appear counter-intuitive, defying what would appear logical from two dimensional plots, 
such as Figure 2. The caveat of Section 2.2.1 should be remembered here. Thus, seen as an interface 
between the physics and mathematics, the optimization of distance metrics indirectly introduces 
physical aspects of the problem into the optimization of algorithm performance. 

Before hyperspectral sensors existed, the challenge of band selection was posed for applica- 
tions related to multispectral sensing where the bands are neither contiguous nor possess spectral 
resolution equivalent to that of hyperspectral sensors [32,33,38]. Nor was SAM employed as a 
distance metric. Several efforts to analyze the information content in multispectral data focused 
on combinatoric analysis of all possible band combinations [46]. It is understandable that these 
approaches focus less on streamlined search techniques and more on data analysis, since the number 
of bands is typically less than ten, and the physical information is relatively coarse and sparse. Hav- 
ing significantly more bands with greater resolution, hyperspectral data poses a more formidable 
challenge for which the exhaustive verification of these methods becomes impractical. Numerous 
methods of band selection have been proposed for hyperspectral data to achieve different ends with 
different measures of performance [3,10,16,19,39]. 

3.3    SINGLE CONTIGUOUS SEGMENTS 

Our objective is to determine which bands maximize the SAM angle for two M-dimensional 
vectors, x and y. The first approach for selecting bands somewhat mimics the physics-based per- 
spective discussed in Section 3.1. We investigate the sub-angles generated by a contiguous segment 
of bands. Thus, this approach is an exhaustive, two-dimensional search for the starting wavelength 
and ending wavelength that demarcates a contiguous segment of spectral measurements that are a 
subset of the total measurements collected by the sensor. The method does not afford considering 
all l(M) = 2M - (M + 1) possible band combinations, rather, it investigates a significantly lower 
number, (M - 1)(M - 2)/2 possible solutions (for M = 145, this is 10296 solutions). Yet, the 
graphical insight it provides is a useful source of comparison for more sophisticated methods. 

Let x and y be the spectra in Figure 7(a). The sub-angles produced for all valid pairs 
of starting and ending band pairs is illustrated in the two-dimensional map in Figure 7(b). At 
locations where the map is red, high sub-angles exist for contiguous segments of bands beginning 
at the starting wavelength and concluding at the ending wavelength. The largest sub-angle is 14.82° 
and occurs over the interval [1269nm, 2184nm]. There are 39 bands in this interval. The smallest 
sub-angle is 0.002° and occurs in the spectral interval [848nm, 862nm]. There are only 2 bands in 
this interval. The complete angle for the two spectra is 14.57° and utilizes all 144 bands. Table 4 
summarizes these results. 

What does the increase in angular separation offer? The sub-angle created by the selected 
bands are a feature that should yield greater angular separation between two target classes. Given 
a test pixel that belongs to one of two classes, it may be compared to the reference spectrum 
from each class, using SAM, and assigned to the class generating the smallest angle. In reality, the 
unknown pixel will not identically match either reference spectrum due to numerous sources of noise 
and interference. However, increasing the angular separation between two classes can minimize the 
opportunity for misclassification when noise is present. 
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2500 

(a) (b) 

Figure 7. (a) Plot of two spectra; (b) Two-dimensional contour map of sub-angles formed from all valid 
starting and ending band pairs. 

Starting 
wavelength 

(nm) 

Ending 
wavelength 

(nm) 

Number of 
bands 

9 

(°) 

Largest sub-angle 1269 2184 39 14.82 
Complete angle 412 2409 144 14.57 
Smallest sub-angle 848 862 2 0.0002 

TABLE 4. Largest sub-angle, complete angle, and smallest sub-angle for the two spectra in Figure 7(a) using 
one contiguous segment. 
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Figure 8. (a) Plot of two green fabric spectra; (b) Two-dimensional contour map of sub-angles formed from 
all valid starting and ending band pairs. 

Starting 
wavelength 

(nm) 

Ending 
wavelength 

(nm) 

Number of 
bands 

e 
(°) 

Largest sub-angle 596 699 12 9.18 

Complete angle 412 2409 144 2.73 

Smallest sub-angle 1561 1574 2 0.0060 

TABLE 5. Largest sub-angle, complete angle, and smallest sub-angle for the two fabric spectra in Figure 8(a) 
using one contiguous segment. 

The same procedure documented in Figure 7 and Table 4 is repeated for two fabrics which are 
different shades of green, as can be visually discerned by the difference in the two spectra in Figure 
8. The results are tabulated in Table 5. The set of contiguous bands that maximize SAM span 
the interval from [596nm,699nm]. The contour map in Figure 7(b) dramatically illustrates what 
segments yield a high sub-angle. Not surprisingly, by examining the spectra in Figure 8(a), there 
is a recognizable difference in the spectra near this interval that accounts for the slight difference 
in pigmentation. 

3.4    MULTIPLE CONTIGUOUS SEGMENTS 

Using the exhaustive search for a single contiguous segment as a foundation, we can extend the 
method of band selection to allow multiple, non-overlapping segments. The corresponding search, 
however, is no longer two-dimensional, as it was in Section 3.3.   For each additional permitted 
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segment having a starting and ending wavelength, the degree of the search increases by two. This 
increases the number of admissible solutions and offers more flexibility in exploiting different parts 
of the spectrum. Unlike the single segment search, where a segment was required to have at least two 
bands, multiple intervals permit segments to consist of a single band. Unfortunately, with at least 
four degrees of freedom, a map cannot display the spectral intervals of interest. Moreover, the search 
for more than three segments using hyperspectral data of typical lengths becomes computationally 
unfeasible. 

Using the same pair of spectra in Figure 7(a), Figure 9 illustrates the band selection, and 
Table 6 compares the results of the exhaustive search for one, two, and three non-overlapping 
contiguous segments. Similarly, using the same pair of spectra in Figure 8(a), Figure 10 illustrates 
the band selection, and Table 7 compares the results of the exhaustive search for one, two, and 
three non-overlapping, contiguous segments. 

3.5    BAND ADD-ON (BAO) 

In this section, we derive another algorithm for band selection that overcomes the limitations 
encountered when searching for contiguous segments of bands. We derive this algorithm directly 
from the mathematical definition for SAM, starting with the expansion in (3): 

l_l_ <*t.,y»> 
cos0(x,y)    =   m"PlL <x»jr«> 

V^tf/TT^ (23) 
CT 

As before, x and y are two length-M vectors in $M', the elements of x and y are partitioned such 
that x = [xo x6] and y = [ya y6], where M = a + b and xa,ya € R

a and x6,y6 e R6. We will now 
exploit the right-most factor in (23). 

3.5.1    The Geometry of ß 

In (23), cos0a is the cosine of the angle created by xa and ya: 

r^o - <x°>y°> cos*a-|wiW w 
Then, cos 0(x, y) can be decomposed as a function of the angle created by xa and ya scaled by 
another factor which involves the bands in x6 and y6 as well as xQ and yfl. We will call this factor 
0(xa,ya;x6,y6), or just ß: 

1 -(- <xb,yb> 
g(Wt,yt)=      r->   . (25) 

Vi+IMPVi+lCT 

The terms in ß, however, can be further quantified. The first term in the denominator is the 
secant of the angle created by xa and x, sec6XAb, and the second term is the comparable term for 
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Figure 9. Single segment bands (green), double segment bands (cyan), triple segment bands (magenta) for 
spectra in Figure 7(a). 

Interval 
(nm) 

Number of 
bands 

9 

(°) 
Single segment [1269,2184] 39 14.82 

Double segment [596,603] 
[2086,2086] 3 25.55 

Triple segment [596,596] 
[603,603] 

[2086,2086] 3 25.55 

Complete angle [412,2409] 144 14.57 

TABLE 6. Largest sub-angle and complete angle for the two spectra in Figure 7(a) using one, two, and three 
contiguous segments. 
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450   500   550   600   650    700   750   800 

Wavelength (nm) 

Figure 10. Single segment bands (green), double segment bands (cyan), triple segment bands (magenta) for 
spectra in Figure 8(a). 

Interval 
(nm) 

Number of 
bands 

e 
(°) 

Single segment [596,699] 12 9.18 
Double segment [627,643] 

[689,689] 4 10.80 
Triple segment [416,419] 

[627,635] 
[689,689] 5 10.95 

Complete angle [412,2409] 144 2.73 

TABLE 7. Largest sub-angle and complete angle for the two spectra in Figure 10(a) using one, two, and 
three contiguous segments. 
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^1,^2 

Figure 11. Relationship of sub-angles that comprise the complete angle between two spectra. 

y, sec0yiat). Thus, ß can be rewritten as 

ß(xa, ya; x6, y6) = cos 0X)O,b cos 0^(1 +      Xb,Yb—). (26) 

This revised expression for ß demonstrates that, given x0 and ya, the addition of x^ and yj, changes 
cosöa by the multiplicative terms in (26). Two of those terms, cos 6XAb and cos 0yAb, are necessarily- 
less than one, and separately measure the angular changes in x and y. The third term is necessarily 
greater than one (hyperspectral signals are always non-negative) and interrelates the sets of previous 
and new values in x and y. Thus, cosö may be greater than, less than, or equal to cos#a. Values 
of ß > 1 will decrease the resulting angle, whereas values of ß < 1 will perform the opposite. Using 
three dimensions, these relations are illustrated in Figure 11. 

Given two spectra, x and y, as well as a subset of their bands that serve as a starting point, 
one or more bands may be selected incrementally from the unused bands in x and y and appended 
to the existing set. Unused band(s) may be ranked by their associated value of ß and the band(s) 
having the lowest value of ß is added to the subset of selected bands. Then, cos 6a is re-evaluated 
with the new band and new values of ß are calculated for the remaining unused bands. The process 
may be repeated iteratively, until a stopping condition is met. One logical criterion is when no 
remaining bands exist that yield a ß < 1. This is equivalent to adding bands having ß < 1 (i.e., 
that increase the angle between x and y) until no bands remain having ß < 1. 

3.5.2    Initial Subset of Bands 

We will refer to the initial subset of bands for x and y as x(Bi) and y(Bi), where Bi is a 
vector containing the associated band numbers. The initial subset of bands, Bi, that begins the 
procedure can be chosen to meet different requirements.  To gain insight on a proper choice, we 
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can examine the mathematical structure of ß in (3). After selecting an initial subset of bands, we 
would like ß to be as small as possible to broaden the initial angle. For this to occur, Bi should 
be selected to yield the following properties: 

1. < x(Bi),y(Bi) > should be as large as possible to minimize the numerator of/?. 

2. ||x(B1)||
2 and ||y(Bi)||2 should be as small as possible maximize the numerator of ß. 

Although, these two requirements are in conflict, many different criteria can be constructed based 
on some combination of both restrictions. This process is greatly simplified by limiting the size 
of Bi to two bands, i.e., the starting angle is a 2-angle. Repeated experiments revealed two 
starting conditions that yield results that are both useful, as well as, instructive. The first criterion 
exhaustively identifies the pair of bands that yield the smallest 2-angle for x and y, heretofore 
referred to as BAO-MIN. The second criterion performs the opposite procedure, identifying the 
biggest 2-angle, heretofore referred to as BAO-MAX. 

Based on this formulation, one possible algorithm for incrementally selecting bands can be 
listed as follows: 

Step 1: Select a pair of starting bands. BAO-MIN and BAO-MAX are alternatives. 

Step 2: Calculate ß for each of the remaining bands. 

Step 3: Of the bands having ß < 1, select the band having the lowest ß and add it to the set of 
selected bands. If no band has a ß < 1, then quit. Otherwise go to Step 2. 

The flowchart for selecting bands with BAO appears in Figure 12. 

3.5.3    Experiments with Band Add-On 

In order to demonstrate the BAO band selection technique discussed in Section 3.5, we again 
consider two spectra, plotted in Figure 13(a). Alongside, we also show the map of all possible 
2-angles derived from these spectra in Figure 13(b). Although the map looks somewhat similar to 
the maps generated during the search for single contiguous segments in Section 3.3, they are very 
different. The maps in Section 3.3 reveal the SAM values for the bands enclosed by a starting and 
ending wavelength, whereas, the map in Figure 13(b) calculates the 2-angle using all unique pairs 
of wavelengths. 

An analysis of the map in Figure 13(b) reveals that the maximum 2-angle is 29.98° and 
occurs at (1632nm,2051nm). The minimum 2-angle is 0.00012° and occurs at (684nm,757nm). 
Using either of these pair of starting bands, we can proceed to incrementally add bands that 
maximize the angular separation between the two spectra. 

We first choose as our starting bands the pair that have the minimum 2-angle (BAO-MIN). 
The next step requires a calculation of ß for all remaining bands. To demonstrate this step, we 
graphically illustrate the principles behind the band selection. Any band may be chosen, regardless 
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Figure 12. Flowchart for Band Add-On (BAO) algorithm to select bands that maximize the angular separation 
between two spectra. 
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Figure 13. (a) Plot of two spectra; (b) Contour map of all possible 2-angles. 

of its proximity to the starting bands. As a consequence, for each band in the two spectra (heretofore 
called x and y), we can plot the corresponding reflectance values for the two spectra. This is 
depicted in Figure 14. Here, bands that have already been selected are plotted with an "O", and 
the remaining bands are plotted with an "X". 

The range of reflectance values for x and y define the breadth of the axes in Figure 14. We 
can add shading to indicate the value of ß at each point in this two-dimensional domain to indicate 
how different pairs of band values increase or decrease the overall angular separation of the two 
spectra. It is important to note that the shading depends on the initial starting bands used in 
the expression for ß in (25). The case of starting bands with a minimum angle (BAO-MIN) is 
conveyed in Figure 15(a), and every available band induces a value of ß < 1. As a consequence, 
any band that is added to the starting pair of bands will necessarily increase the overall angle. This 
result is not surprising, since BAO-MIN starts with the smallest possible angle. In Figure 15(b) 
the situation using the starting pair of bands having the largest 2-angle (BAO-MAX) is conveyed. 
A black contour indicates the band values for x and y that lead to ß = 1, identifying the region 
within which ß > 1. A significant number of bands lead to values of ß > 1, and hence are not 
candidates to be added to the starting band set. 

The shaded scatterplots in Figures 15(a) and 15(b) demonstrate which bands have ß < 1, 
but do not indicate what wavelengths are associated with different values of ß. Figure 16(a) does 
this for BAO-MIN, coloring band values for the two spectra by their associated value of ß. Bands 
having ß > 1 are colored black. Figure 16(a) shows that the starting band pair for BAO-MIN 
results in nearly all remaining bands having ß < 1. Hence these bands are viable candidates to 
increase the angle between x and y. Figure 16(b) illustrates the same for BAO-MAX, and, only 
bands in the blue and green part of the visible contribute to low values of/?. Table 8 compares the 
results obtained so far. 
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Figure 14. Scatterplot of band values for the two spectra in Figure 13(a). 

The illustrations in Figure 15 and Figure 16 provide a graphic illustration of the mathematical 
principle for adding bands. Bands that possess an associated value of ß < 1 will increase the angular 
separation. For both BAO-MIN and BAO-MAX there are multiple candidate bands with ß < 1 
that may be added to the initial set with ß <l. In such a case, different criteria could be applied 
to perform the selection. We will choose here to select the candidate band having the lowest ß. 
From Table 8, the new SAM angle for x and y having three bands can easily be calculated using 
(23). For BAO-MIN, the band having the lowest ß (0.954) occurs at 2051nm, and the resulting 
3-angle using these three bands is 17.42°. For BAO-MAX, the band having the lowest ß (0.993) 
occurs at 411nm, and the resulting 3-angle is 30.70°. 

We can now repeat the procedure of evaluating ß for the remaining bands using the two 
initial bands, as well as the first selected band. The corresponding scatterplots for BAO-MIN and 
BAO-MAX appear in Figure 17 and demonstrate that fewer available bands have a corresponding 
ß <l. The associated shaded plots of the spectra in Figure 18 illustrate the wavelengths at which 
these bands occur. Table 9 summarizes the important quantities for this iteration. 

This iterative procedure can be repeated until no bands satisfy ß < 1. Any available band 
that is added to the selected bands will only decrease the overall angle between x and y. Compared 
to the complete angle of 16.71°, BAO-MIN increased the angle between x and y to 27.34° using 37 
bands, and BAO-MAX increased the angle to 32.10° using 8 bands. Figure 19 illustrate the bands 
that were chosen by BAO-MIN and BAO-MAX with respect to the original two spectra, and the 
final numerical results are summarized in Table 10. 
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Figure 15. Scatterplots of band values for the two spectra in Figure 13 during the first iteration of BAO when 
using (a) minimum 2-angle (BAO-MIN) as starting bands; (b) maximum 2-angle (BAO-MAX) as starting 
bands. The color shading indicates the associated value of ß, and the black line corresponds to values where 
0 = 1. 
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Figure 16. Plots of spectra with color shading from Figure 15 during first iteration that illustrate values of ß 
as a function of wavelength for (a) minimum 2-angle (BAO-MIN) as starting bands; (b) maximum 2-angle 
(BAO-MAX) as starting bands. 
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Figure 17. Scatterplots of band values for the two spectra in Figure IS during the second iteration of BAO 
when using (a) minimum 2-angle (BAO-MIN) as starting bands; (b) maximum 2-angle (BAO-MAX) as 
starting bands. The color shading indicates the associated value of ß, and the black line corresponds to 
values where ß — 1. 
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Figure 18. Plots of spectra with color shading from Figure 11 during second iteration that illustrate values of 
ß as a function of wavelength for (a) minimum 2-angle (BAO-MIN) as starting bands; (b) maximum 2-angle 
(BAO-MAX) as starting bands. 
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Bands in 
initial set 

(nm) 

Initial 
angle 

(°) 

Available bands 
with ß<l 

Range of 
available ß 

BAO-MIN 684,757 0.00012 143 [0.954,1] 
BAO-MAX 1632,2051 29.98 15 [0.993,1.091] 

TABLE 8. Summary of results from Figure 15 for BAO-MIN and BAO-MAX. 

Selected 
bands 
(nm) 

Existing 
angle 

(°) 

Available bands 
with ß<\ 

Range of 
available ß 

BAO-MIN 684,757,2051 17.42 82 [0.977,1.021] 
BAO-MAX 1632,2051,411 30.70 11 [0.994,1.095] 

TABLE 9. Summary of results from Figure 17 for BAO-MIN and BAO-MAX. 

BAO-MIN 

BAO-MAX 

Complete angle 

Initial 
bands 

684,757 

1632,2051 

Initial 
angle 

(°) 
0.00012 

29.98 

Selected 
bands 
(nm) 

{2051,1291,2061,425,411,2370, 
414,1632,2041,428,421,418, 
447,1644,2362,435,432,439, 
443,529,450,458,535,1276, 
547,541,639,524,585,592, 

463,484,454,457,518} 
{412,425,414,421,418,428} 

All 

Total 
number 
of bands 

37 

145 

Final 
angle 

(°) 

27.34 

32.10 
16.71 

TABLE 10. Final results for maximizing the angle between x and y in Figure 13(a) using BAO-MIN and 
BAO-MAX. 
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Figure 19. Band selection for (a) BAO-MIN and (b) BAO-MAX for the two spectra in Figure IS. 
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10   12   14   16   18   20   22 
Band number 

Figure 20. Two length-23 spectra derived by truncating and spectrally degrading two length-U5 spect 

3.6    COMPARISONS WITH EXACT ANSWERS 

ra. 

The results in Section 3.3, 3.4, and 3.5 indicate that while it is possible to select bands that 
yield a sub-angle greater than the complete angle, none of the approaches can guarantee that 
it always selects those bands that yield the biggest sub-angle. The attempts using single and 
multiple contiguous segments are intuitive, but severely limit the number of admissible solutions. 
The segments also become prohibitively expensive to compute when more segments are permitted. 
Prom the scatterplots in Figures 15 and 17, it is evident that the subset of bands selected using 
BAO depends on the rule used to select the bands at each iteration, as well as the starting bands. 
There are numerous opportunities to vary this algorithm, with each alteration possibly yielding a 
different result. 

Thus, the approaches we have explored are inherently sub-optimal, i.e., they are not guaran- 
teed to yield the set of bands possessing the largest sub-angle. Ultimately, the largest sub-angle 
between two spectra involves a multi-dimensional search with no known closed-form, analytical 
solution. In addition, the decision space over which an discrete optimization would search for the 
biggest sub-angle is not necessarily convex, meaning that any gradient-based, or greedy, approach 
may find a local point of optimality, instead of a global optimum. 

One alternative to ascertain the largest sub-angle between two spectra would require exhaus- 
tively measuring every sub-angle that exists between two spectra. For hyperspectral signals having 
a dimension of approximately 150, Table 3 demonstrated that the number of sub-angles is well 
beyond reasonable calculation. For lower dimensions, however, such a complete search is possible. 

40 



Rank Sub-angle 

(°) 
Bands 

1 33.68 {11,20,23} 

2 33.51 {10,20,23} 

3 33.42 {11,20,22} 

4 33.31 {11,20,21} 

5 33.25 {11,20} 

6 33.24 {10,20,22} 

7 33.19 {11,20,22,23} 

8 33.12 {10,20} 

9 33.11 {10,20,21} 

10 33.10 {10,11,20,21,22,23} 

TABLE 11. Ten highest sub-angles for the pair of spectra in Figure 20. 

Sub-angle 

(°) 
Bands Number 

of bands 
Percentile 
rank (%) 

Exhaustive {6max) 33.68 {11,20,23} 3 100 

BAO-MIN 24.36 {5,6,9,11,10,16,20, 
12,21,23,22,8,15,17} 14 92.43 

BAO-MAX 33.68 {11,20,23} 3 100 

Single segment 27.95 {9,10,11,12,13,14, 
15,16,17} 9 99.37 

Double segment 33.31 {11,20,21} 3 99.99 

Triple segment 33.68 {11,20,23} 3 100 

Complete angle 20.37 All 23 53.12 

TABLE 12. Comparison of band selection techniques with exhaustive solution for length-23 spectra in Figure 
20. 
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Band number 

Figure 21. Two length-2Z spectra derived by truncating and spectrally degrading two length-145 spectra. 

Figure 20 shows two length-23 spectra that have been derived by truncating and then spec- 
trally degrading two length-145 hyperspectral pixel spectra. The complete angle is 20.37°. An 
exhaustive search calculated every sub-angle, and the maximum sub-angle, 0mai, of 33.68° was 
induced by bands {11,20,23}. The ten highest sub-angles are tabulated in Table 11. While it is 
evident that there are several sub-angles yielding almost the same value as 9max, nearly the same 
subset of bands re-appear in various combinations: {10,11,20,21,22,23}. Table 12 demonstrates 
that when the band selection algorithms discussed in Section 3 are applied to the same pair of spec- 
tra, several of the approaches find subsets of bands that appear in Table 11. The rightmost column 
indicates the percent of the total set of sub-angles that a method equals or exceeds. BAO-MAX 
and the triple-segment approach both find 0max. BAO-MIN finds a significantly lower angle than 
Omax, while using 14 bands, but still exceeds 92.43% of all sub-angles. Interestingly enough, the 
complete angle, using all bands, is only greater than 53.12% of all sub-angles. 

A similar set of effects is noticed in Table 13 and Table 14 for the two spectra plotted in 
Figure 21. 

3.7    DISCUSSION 

There are several conclusions that can be made about the band selection techniques and 
results that have been discussed. We consider them independently. 
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Rank Sub-angle 

(°) 
Bands 

1 67.82 {7,23} 

2 66.61 {1,7,23} 

3 66.42 {6,23} 

4 66.40 {2,7,23} 

5 66.13 {3,7,23} 

6 66.10 {7,20,23} 

7 65.65 {4,7,23} 

8 65.27 {1,2,7,23} 

9 65.14 {7,21,23} 

10 65.11 {6,7,23} 

TABLE IS. Ten highest sub-angles for the pair of spectra in Figure 21. 

Sub-angle 

(°) 
Bands Number 

of bands 
Percentile 
rank (%) 

Exhaustive (6max) 67.82 {7,23} 3 100 

BAO-MIN 48.07 {4,12,23,8,22,7,21,6,20} 9 99.13 

BAO-MAX 67.82 {7,23} 2 100 

Single segment 54.04 {17,18,19,20,21,22,23} 7 99.76 

Double segment 67.82 {7,23} 2 99.99 

Triple segment 66.61 {1,7,23} 3 99.99 

Complete angle 29.98 All 23 53.58 

TABLE 14. Comparison of band selection techniques with exhaustive solution for length-23 spectra in Figure 
20. 
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3.7.1 Number of Bands and Robustness 

The exhaustive determination of sub-angles in Tables 12 and 14, as well as the techniques 
based on contiguous segments and band add-on, demonstrate that sub-angles greater than the 
complete angle can frequently be found having five or less bands. In Section 3.2, we suggested that 
the increased contrast can lead to more robust discrimination. However, are there drawbacks to 
using a very small number of bands? 

For realistic conditions, the answer is yes, but the effects can be mitigated and controlled. 
Given a sub-angle larger than the complete angle, this indicates the presence of a feature that 
possesses greater contrast between two spectra (see Section 3.2). However, in order for this feature 
to be useful for discriminating between two classes, this feature must be robust to variability in 
the incoming signal. We can express this concept mathematically. Let there be two classes, having 
template spectra, tx and t2, respectively. An unknown test pixel, r, that arises from one of the two 
classes may also have additive interference, w: 

r = ti + w    OR    r = t2 + w. (27) 

The interference may arise from numerous sources, including differences in observation angle, at- 
mospheric effects, and illumination. If r is compared with ti and t2 using SAM, and 0(ti,t2) is 
small, then if w is large enough, it will cause r to be misclassified. Increasing the angle using a 
subset of bands, B, increases the angular contrast between the two classes, but, depending upon 
the structure of the noise, can also amplify the variability in the angular measurements, and conse- 
quently the angular comparisons with ti and t2, also leading to misclassification. In short, a very 
low number of bands may not be robust to variability in the input signal, and hence, it may be 
preferable to accept a lower sub-angle (but still greater than the complete angle) in order to have 
a larger set of bands. This important topic is the subject of Section 4. 

3.7.2 Starting Bands 

We demonstrated two conditions for selecting a pair of starting bands to initialize the BAO 
optimization. Experiments using BAO-MIN and BAO-MAX have demonstrated a consistent be- 
havior. BAO-MIN arrives at a lower sub-angle than BAO-MAX, and in doing so, utilizes more 
bands than BAO-MAX. This conclusion is confirmed in Section 3.6, where the maximum sub-angle 
was found by BAO-MAX and only had 2 or 3 bands. This result is not surprising. BAO-MAX 
starts with the largest 2-angle and adds bands that further increase that sub-angle. Repeated 
experiments have demonstrated that the largest sub-angle is often a combination of 2 to 5 bands, 
of which the initial bands for BAO-MAX are frequently a subset. Hence, BAO-MAX starts with a 
large angle and adds only a few, if any, bands, before it must stop. On the other hand, BAO-MIN 
achieves its final angle, albeit smaller than the maximum sub-angle, but using more bands. 

3.7.3 Optimality 

We explored several techniques for determining the largest sub-angle between two spectra. 
However, all of the approaches are sub-optimal, and none are guaranteed to yield the largest angle. 
The experiments in Section 3.6 demonstrate that the sub-optimal approaches appear to arrive at 
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the optimal solution, or very near to it. More importantly, the independent approaches focus on 
the same parts of the spectrum, leading to the conclusion that, despite being based on different 
formulations, the same bands of interest can be found by different means. 

3.7.4 Non-Intuitive Results 

The figures and tables summarizing the band selection demonstrate that the results are not 
always intuitive. Despite the obvious differences between spectra in Figures 7 and 8, the angular 
structure of data is difficult to infer from two-dimensional plots (see Section 2.2.1). The angular 
interpretation of data occurs in a high-dimensional space, and SAM imposes its own mathematical 
structure in that domain. 

3.7.5 Phenomenology 

In Section 3.1, we discussed how a priori physical knowledge of phenomenology has influ- 
enced the design specifications of sensors. The spectral intervals, as well as their bandwidths, are 
chosen to observe the important phenomenology, but little consideration is given to how the data 
will ultimately be processed. In contrast, we have demonstrated that band selection algorithms 
formulated around a given distance metric, such as SAM, selectively induce phenomenology into 
the mathematical analysis from bands that yield greater contrast, while omitting those that do not. 
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3.8    SECTION SUMMARY 

In this section, we discussed ways in which bands have been selected to perform tasks in 
hyperspectral processing. We focused first on how a priori physical knowledge of the electromag- 
netic intervals where spectral features are present has driven the design of sensors as well as the 
algorithms that process the measured data. This approach has been prominent in the observation 
and analysis of environmental data where bands are carefully chosen to match the phenomenology 
under observation. In military scenarios, where the degree of accuracy required is much higher, 
physical knowledge about the objects of interest may be limited, and, hence, hyperspectral data 
is collected in many narrow bands over wide intervals. Distance metrics perform the fundamental 
task of comparing two spectra, and it was shown that by selecting the appropriate subset of bands, 
the most commonly used metric for hyperspectral processing, SAM (Spectral Angle Mapper), can 
be mathematically optimized to increase the angular separation between two spectra. This form 
of band selection "induces" the appropriate phenomenology to increase the contrast between two 
signals. Different approaches were demonstrated for selecting bands that increase SAM for two 
spectra. Contiguous segments of data were identified by exhaustive searches, but the approach 
severely limits the number of admissible solutions and is computationally demanding. A more 
efficient technique, BAO (Band Add-On), is a framework for analytically selecting bands that is 
based on a mathematical decomposition of SAM. The technique was demonstrated in detail for 
two sample spectra. Although it is impractical to exhaustively find the largest sub-angle for typ- 
ical hyperspectral data, an exhaustive search of all possible sub-angles was performed for a pair 
of length-23 spectra. The results were compared to the bands selected by the different techniques 
discussed in this section, and showed that the methods, while mathematically sub-optimal, suc- 
ceed in finding angles that are close to the maximum sub-angle. The robustness of band selection 
algorithms to target variability is an important issue that will be addressed in the next section. 
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4.    DISCRIMINATING TARGETS HAVING VARIABILITY 

In Section 3, we demonstrated how the angular separability of two target spectra can be 
increased by selecting bands through a mathematical optimization known as Band Add-On (BAO). 
In this section, we extend that formulation to select bands that improve the ability to distinguish 
two classes of targets, where each class is described by at least one sample spectrum. This scenario 
is important for material identification, which is the principle capability that hyperspectral sensing 
possesses over other sensor modalities (e.g., radar, sonar, etc.). Hence, material identification is a 
unique capability that hyperspectral sensors offer to spectral processing, as well as to the fusion of 
multi-sensor data. 

In Section 1.2, we noted that most hyperspectral processing involves a measurement of the 
similarity between two spectra, and this is where distance metrics perform an important role. The 
ability to distinguish two classes is not just a function of the distance between the means of two 
classes, also referred to as the inter-class separation. If the variability of the members, referred to 
as the intra-class variability, of one or both classes is great, then even if the inter-class separation is 
great, distinguishing one class from the other class may still be problematic. Figure 22 demonstrates 
this graphically. Essentially, successful discrimination of one class from another is a function of 
both the inter-class separation and the intra-class variability. 

Section 3.5 outlined the framework for an algorithm to select bands that increases the angle 
between two spectra, thereby increasing the inter-class separation. No mention was made of the 
concomitant impact of using a reduced set of bands on intra-class variability because there was 
no intra-class information. In this section, we account for the fact that there is variability in the 
reflectance spectrum measured for a distinct material, and we incorporate what is known about 
that variability into a band selection algorithm based upon BAO. 

4.1    APPLICATIONS TO MATERIAL IDENTIFICATION 

Material identification using hyperspectral data is the procedure by which an unknown pixel 
is classified as one of several materials whose reflectance spectra are known from reference mea- 
surements. Ideally, the reflectance spectrum of a material measured by a laboratory instrument 
should not vary, but, in reality, it does, due to numerous sources (e.g., sensor noise, atmospheric 
variability, target orientation). In practice, several reflectance measurements are usually collected 
using a spectroradiometer and then averaged to obtain a template spectrum for each class. In 
some HYMSMO (Hyperspectral MASINT Support to Military Operations) experiments with the 
HYDICE sensor, the number of reference measurements for targets of interest typically range from 
3 to 10. 

Considering the high dimensionality of hyperspectral data, the fact that only a handful of 
reference measurements may exist for a substance distinguishes the material identification problem 
from the approaches utilized for statistical pattern recognition. Traditional pattern recognition 
algorithms [12] require probability density functions (PDFs) to describe intra-class variability, but 
determining accurate PDFs empirically requires a large number of sample pixels for each class. 

47 



D2(>D,) 

(a) (b) 

Figure 22. Notional illustration of two target classes, where the inter-class distance between the class means 
in (b) is greater than that in (a), but the resulting increase in intra-class variability in (b) still makes perfect 
classification difficult. 

Hence, the lack of an accurate description of how material spectra vary necessitates alternate 
methods. 

In the absence of statistical formulations, a distance metric provides a meaningful way for 
comparing an unknown pixel spectrum with a library of template spectra, each corresponding to 
a specific material. A common distance metric for this application is SAM, which compares an 
unknown pixel spectrum, r, to the template spectra, tui = l,...,K, for each of K templates and 
assigns r to the material having the smallest distance, 

argmin    , 
Class(r)   = i < i < K (?{r, t{ (28) 

We will focus on SAM as a distance metric for material identification for the remainder of this 
report. 

4.2    INCORPORATING VARIABILITY IN BAND SELECTION 

In Section 3.5, we developed a method for iteratively selecting bands that increases the angular 
separation between two spectra. In Section 4.1, we saw, however, that a material may not be 
characterized by a single measured spectrum, but, in fact, may have several valid spectral signatures, 
but not enough for an accurate representation of statistical intra-class variability. Provided this, a 
band selection method that maximizes the angle between sets of spectra would increase the angular 
contrast between two materials, thus improving the ability to distinguish two classes of materials, 
even when interference and distortions are present. 

Predicting variability in a reflectance spectrum for a unique material is difficult. The differ- 
ence in spectroradiometer measurements indicate at least some variability that may arise from the 
instrument noise. Variability may also arise from other sources, including spatial non-homogeneity 
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of the material. More importantly, the cumulative information from the entire set of spectra is 
greater than the just the mean spectra, and the way in which the spectra vary, small or large as 
it may be, can still be exploited by band selection to increase the angular separability of two sets 
of spectra, while providing additional robustness to signature variability. The variability observed, 
and exploited, in the spectroradioimeter measurements, however, is significantly less than the worst 
signature variability that can be observed by an operational sensor. Yet, as stated before, incorpo- 
rating the variability observed in the laboratory measurements provides at least some leverage to 
yield better classification results. 

4.3    TWO PHILOSOPHIES: ADM AND MDM 

The formulation in (28) provides the basis for classifying an unknown spectra with a material 
label, through a series of pairwise comparisons using SAM. Integral to optimizing this test are two 
quantities: 

1. The template spectra, U, that represent the spectra for each distinct material in a spectral 
library, and 

2. The bands that are employed in the angular comparisons. 

We consider two philosophies for selecting these quantities based on the BAO methodology explored 
in Section 3.5. Although a typical library of material spectra may contain hundreds or thousands 
of spectra, for our immediate purposes, we assume there are two material classes, class X and 
class Y. Each pixel is a hyperspectral measurement having M bands, and each reference spectrum 
represents a different substance or material. Our goal, then, is to devise a way to classify pixels 
as belonging to either X or Y. For each class, we assume there are a set of M x 1 training pixels 
for each class, X = {xi,.. .,xNx},Y = {yi,... ,YNY}- However, as mentioned earlier, there are 
not enough pixels to develop dependable, statistical representations of the intra-class variability. 
This is frequently the case for man-made targets of interest whose statistical variability under all 
possible observation conditions is hard to quantify. 

4.3.1    Average Distance Method (ADM) 

The first method uses BAO to select a subset of bands, B, to maximize the average pairwise 
cosine between spectra in X and Y. The Average Distance Method (ADM) is illustrated concep- 
tually in Figure 23 and strives to minimize the average cosine of every pairwise angle between the 
entries in X and Y. The quantity being optimized is 

Nx NY 

The mean spectra of each class, px and /iy, serve as templates during classification, but only using 
the selected bands. The implication here is that the bands in B will increase the average angle 
between the spectra in X and Y, where the average is taken over all possible pairs of spectra in X 
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and Y. This approach differs from the simple maximization of the angle between \ix and pY, by 
including the influence of the member spectra in X and Y on band selection. 

As in BAO, we choose two initial bands, Bi = [ &i b2 ] to begin the iterations. Borrowing 
the same conclusions made in Section 3.5.2, we can extend the logic of BAO-MIN and BAO-MAX 
here and select the pair of bands that either minimize or maximize the cumulative sum of cosines 
for the spectra in X and Y, 

Nx NY 

BAO-MIN:       T]yr£j;<ffl«(xj(B1)lyj(B1)) (30) 
x   Y i=\ j=\ 

NX   Ny 

BAO-MAX      "IT -=-v-EEcosö(^(Bi).y,(Bi)). (31) 
t=l j=l 

It was observed, however, in Section 3.7 that the starting condition imposed by BAO-MAX 
often resulted in a low number of total bands (2-4). This is a consequence of picking an initial 
pair of bands that induces a large starting angle, leaving few, if any, valid candidates to further 
increase the angle. As Tables 11 and 13 demonstrate, BAO-MIN often arrives at similar, but lower, 
angles, but using significantly more bands. Despite the smaller angles, the luxury of more bands 
is important, since angular target variability is often mitigated. Hence, we use BAO-MIN as the 
starting condition for ADM. Likewise, Step 2 of ADM appends individual bands that induce the 
smallest average ß, ß, such that ß < 1, 

argmin      i       N* NY 

h=   "k     NT^T^Yl^^^y^iy^iih)^^)), (32) 
i=l j=l 

for k > 2, where x*(Bi) = [a*ft),...,Xi(h-i)], and yi(Bi) = fofo),... Mh-i)), and bk $ Bj. 
If no band makes ß < 1, the procedure ends. The template spectra, tx and tY, for a subsequent 
test are /xx and /xy and use only the selected bands in B. 

4.3.2    Minimum Distance Method (MDM) 

In ADM, the spectra used as templates are the means of each class, and bands are chosen to 
maximize the average angular difference between X and Y. However, the criteria in (31) does not 
guarantee that the elements in X and Y will be correctly classified by (28). In contrast to ADM, a 
different approach, called the Minimum Distance Method (MDM), chooses an initial pair of bands 
and template spectra such that the elements of X and Y are correctly classified by SAM, and then 
adds additional bands that increase the angular separation, while maintaining perfect classification. 

To outline this technique, we define the worst-case angle, 9W(X, Y, Bj), for X and Y using a 
set of bands, Bj, as 

ew(X,Y,B})   =   ^g^'MBO.y^B,)) (33) 

=   Q(xw,yw,Bi), (34) 
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Figure £?. Conceptual difference between MDM and ADM. ADM selects bands that increase the separation 
between the means of each class. MDM selects bands to increase the separation between the closest, or 
worst-case, pixels from each class. 

where xw and yw are the spectra in X and Y that create the smallest angle. We can search for a 
pair of initial bands, Bi, having the largest 0(xw, yw, Bi) that also must classify every pixel in X 
and Y correctly when the template spectra are t^ = xw and ty = yw, 

«(txCBO.XiCBi))   <   «(tYCBiJ.XiCBi)), Vx^eX (35) 
6(tY(B1),yi(B1))    <   e(tx(B1),yi(B1)), VyieY. (36) 

Figure 23 illustrates this concept. 

Once Bi is found, additional bands are added using BAO to increase the angular distance 
between xw and yw (under the condition that 6w(xw,yw) increases by the definition in (33)) and 
each pixel in X and Y continues to be correctly classified. It may occur that after adding a 
band to the current x„, and yw, that a different member of X and Y satisfies Ow(xw,yw). In this 
case, the template pixels for X and Y are reset to those entries giving rise to 9w(xw,yw). The 
goal here is to protect the pixels having the greatest chance of misclassification (i.e., xw, yw) by 
letting the template spectrum equal xw and yw. Bands are added incrementally, as before, under 
the condition that it preserves perfect classification of the pixels in X and Y and also increases 
0w(xiu,yu,). The iterations end when no unused band remains that increases 6W and still preserves 
perfect classification. 

4.4    TWO-CLASS EXPERIMENTS WITH SIMILAR TARGETS 

We choose to apply the band selection techniques, ADM and MDM, to improve the discrim- 
inability of two classes of targets that are very similar in their spectral signatures. While two classes 
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Bands 
(nm) 

Number 
of bands 

ow(X,Y) 

(°) 
Correct Classification 

Material X Material Y 
ADM {994,1009,2291,2281,2308, 

2300,2317,2272} 
8 5.434 17/17 0/20 

MDM {769,2281,2300,2020,2317, 
2291,704,694,513,508, 

518,2030,2386,2308,503, 
524,529,498,535,684} 20 7.171 17/17 20/20 

All bands {400 - 2405} 145 3.180 17/17 0/20 

TABLE 15. Results of band selection and binary classification test to discriminate material X and material 
Y using data from Forest Radiance I, Run 05. 

may have discernible laboratory reflectances, the process by which operational sensors collect data 
is not reliably clean enough to always maintain the differences. In addition to sensor noise, there 
are numerous sources of additional interference, including atmospheric compensation and target 
variability. Moreover, tactical scenarios may introduce occlusion as well as off-nadir viewing ge- 
ometries. In short, the separability of materials in controlled laboratory setting cannot be expected 
in real airborne or spaceborne data collection environments. 

In particular, military strategies often employ CC&D techniques that render targets indis- 
tinguishable to the natural environment in the visible spectrum. However, spectral differences in 
the near-infrared and shortwave infrared may exist that a hyperspectral sensor can exploit. The 
differences may be the inevitable dissimilarity between a man-made target and the environment, 
or they may be intentional, in order to discern one man-made target from another. Invariably, the 
spectral signatures of targets in CC&D environments may be very similar, and consequently, the 
ability to distinguish two materials with a high degree of accuracy, as well as certainty, is pivotal. 

4.4.1    Two Similar Targets in HYDICE Data 

In this section, we demonstrate the application of the band selection techniques in Section 4.3, 
ADM and MDM, in order to increase the discriminability of two target classes that are very similar 
spectrally. Our goal is to select bands that maximize the separability of two similar materials and 
to improve classification results with real data. 

We will, again, refer to the two targets as material X and material Y. As part of the effort to 
provide ground-truth for the experiment, the reflectance spectra for X and Y were measured with a 
spectroradiometer. Figure 24(a) plots the six measured reflectance spectra (after resampling to the 
wavelengths of the sensor) for material X and the three measured reflectance spectra for material Y. 
In comparison, Figure 24(b) illustrates twelve reflectance spectra (after atmospheric compensation) 
from one target panel of each type as measured by the sensor when it was flown at an altitude of 
5000 feet yielding approximately Im x lm pixels. These pixels were specifically identified to be full 
pixels of their respective materials by careful pixel-by-pixel analysis and ground-truth diagrams. It 
is worth noting the presence of a multiplicative scaling in the spectra in Figure 24(b). 
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Figure 24- Data from Forest Radiance I, Run 05: (a) Reflectance spectra from a spectroradiometer for 
material X (blue) and material Y (red); (b) Atmospherically compensated data from HYDICE sensor collected 
at 5000 feet. 

Upon examination of Figure 24(a), the difference between the two classes of spectra is most 
apparent in the spectral interval from 2200nm to 2400nm. There is also a discernible difference in 
the amplitude of the reflectance peak at 500nm. The reference spectra in each target class maintains 
the same distinctions in these intervals, but the separation between classes in other intervals is not 
as apparent. 

We can now compare the ability of SAM to correctly classify material X and material Y test 
pixels from the Forest Radiance I Run 05 data collection using 1) all bands and reference spectra 
means, 2) the ADM templates (class means) and bands, and 3) the MDM templates (worst-case 
reference pixels) and bands. From the collection of reference spectra, class means were derived by 
simple averaging to serve as class template spectra. Including the 12 full pixels for each class in 
Figure 24(b), 17 full pixels for material X and 20 full pixels for material Y were used. Using all 
145 bands, the binary test in (28) classified all material X pixels as belonging to material X, but it 
misclassified every material Y pixel as material X. 

ADM and MDM were executed on the reference spectra to select bands and class templates 
to increase angular separation using the spectra in Figure 24(a). The plots of the template spectra 
and selected bands for ADM appear in Figure 25(a) and the template spectra and bands for MDM 
are in Figure 25(b). The ADM band selection chose 8 bands, while MDM selected 20 bands. The 
bands and templates using ADM performed exactly the same as using all bands, classifying all 
material X pixels correctly and misclassifying every material Y pixel. MDM, however, correctly 
classified every pixel from both classes. Table 15 summarizes the results of the band selection and 
classification. 

The same kind of results can be generated for similar targets employed in Desert Radiance II, 
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Figure 25. Data from Forest Radiance I, Run 05: (a) Template spectra for material X (blue) and material 
Y (red) with bands selected by ADM; (b) Template spectra for material X (blue) and material Y (red) with 
bands selected by MDM. 
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Figure 26. Data from Desert Radiance II, Run 03: (a) Reflectance spectra from a spectroradiometer for 
material X (blue) and material Y (red); (b) Atmospherically compensated data from HYDICE sensor collected 
at 5000 feet. 

Bands 
(nm) 

Number 
of bands 

0«(X,Y) 

(°) 
Correct Classification 

Material X Material Y 

ADM {682,702,2316,2289,2307, 
2298,766,2333,2325,2342, 

2280,2377,2271,2351,2403,2261} 

16 10.168 15/17 17/17 

MDM {2028,2316,2069,2307,2289, 
2059,766,2342,2298,2333, 

2271,2325,2280} 13 11.526 16/17 17/17 

All bands {400 - 2405} 145 5.041 15/17 17/17 

TABLE 16. Results of band selection and binary classification test to discriminate material X and material 
Y using data from Desert Radiance II, Run 03. 
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where the panels are tan in color, instead of green in Forest Radiance I. The reference spectra and 
sample spectra are in Figure 26(a) and Figure 26(b), respectively. The band selection for ADM 
and MDM are in Figure 27(a) and Figure 27(b). While using all bands succeeded in correctly 
classifying all pixels except two, MDM misclassified only one pixel, while only utilizing a fraction 
of the bands. ADM also misclassified two pixels. The results are summarized in Table 16. 

Despite employing two complementary philosophies, the band selection in Figure 25 and Fig- 
ure 27 demonstrate that both approaches share common subsets of bands, while choosing others to 
meet their optimization criteria. The order in which the bands were selected by BAO was preserved 
in Table 15 and Table 16, and demonstrates that while ADM and MDM may start with different 
pairs of bands, they often converge on common bands, exploiting and inducing the phenomenology 
in those bands that increases the angular separation and yields superior classification performance. 

4.5    DISCUSSION 

The results in Section 4.4.1 demonstrate how metric-driven band selection can help distinguish 
two spectrally similar target classes in a realistic, and noisy, sensing environment. Moreover, the 
larger point proven is that some applications may perform better using only a subset of the spectral 
information collected by the sensor. This is certainly apparent from the band selection illustrations 
in Figures 25 and 27 and Tables 15 and 16. Superior classification performance was achieved using 
only a fraction of the collected bands. 

Of the two approaches, ADM more closely resembles the traditional approach of performing 
angular classification. The mean of the reference measurements provides the template spectra for 
a class, and ADM simply augments this by using a subset of bands on the template. It does not 
endeavor to bound the worst-case performance the way MDM does by making the template spectra 
for a class the one that is most "at-risk." 

The small collection of laboratory reference measurements for a target class do not at all 
provide the best description of the target variability. It is not hard to find targets whose spectra 
vary more dramatically. To counteract other sources of variability requires a model. One possibility 
is to model the variability as arising from mismatch between the actual atmospheric conditions 
and the parameters used to perform atmospheric compensation. MODTRAN [5] is capable of 
performing these simulations, and in conjunction with an atmospheric compensation program, 
different reflectance estimates can be recovered, providing the inputs for ADM or MDM. 
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Figure 27. Data from Desert Radiance II, Run 03: (a) Template spectra for material X (blue) and material 
Y (red) with bands selected by ADM; (b) Template spectra for material X (blue) and material Y (red) with 
bands selected by MDM. 
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4.6    SECTION SUMMARY 

In this section, we extended the BAO algorithm investigated in Section 3.5 to select bands 
that increase the angular separation of two classes whose spectral signature varies. The strong 
parallelism between this capability and the task of performing highly reliable and robust material 
identification using spectral libraries was stated as a practical motivation. Two techniques both 
based on BAO were explored to select bands and template signatures that may be used in an angle- 
based classifier. One approach, the Average Distance Method (ADM), simply selects bands that 
maximize the average angle created by the reference spectra in both classes. The second technique, 
the Minimum Distance Method (MDM), selects bands that improve the angular separation between 
the spectra in each class that are most likely to be misclassified. The applicability of the techniques 
to difficult CC&D problems was discussed, and the desire to maximize the angular separability of 
spectrally similar classes using band selection was motivated. ADM and MDM were applied to the 
task of accurately discriminating two spectrally similar materials using laboratory measurements 
and HYDICE sensor data from two data collections. Figure 25 and Figure 27 illustrate the template 
spectra and the selected bands based on the laboratory measurements. Table 15 and Table 16 
illustrate the improvement in classification results over employing all bands when the bands and 
templates are used to classify actual pixels from both classes collected from Forest Radiance I and 
Desert Radiance II. Superior classification performance was achieved while using only a fraction of 
the available bands. Improvements in performance and robustness can be achieved through better 
models of class variability. 
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5.    MATERIAL IDENTIFICATION AND SPECTRAL LIBRARIES 

In this section, we extend the results for discriminating between two classes to the more 
general task of classifying an unknown pixel spectrum into one of many classes. The fundamental 
unit of this architecture will be the ability to discriminate two classes of spectra which was developed 
in Section 4. 

In developing this architecture based on angle-based measures, it will become clear that there 
are many opportunities to streamline and expedite the processing. Some past efforts focused on 
arranging the entries in a spectral library in clusters that expedite efficient comparisons, while 
choosing a composite of different measures of similarity [2]. Other approaches focus on modelling 
target variability with simulations of different atmospheric conditions [17]. Spectral reflectance 
libraries may contain thousands of spectra, and when timely and accurate answers are required 
in real, operational scenarios, the ability to leverage gains in performance and efficiency from the 
fundamental properties of the mathematical operators is critical. 

5.1    ARCHITECTURES FOR ANGLE-BASED MATERIAL ID 

The most common technique for matching reflectance spectral with template spectra in a 
library utilizes SAM to provide sequential pairwise comparisons between the unknown spectrum, 
r, and each of K library templates, t*, i = 1,..., K, and chooses the material having the smallest 
distance, 

Class(r)   =   .^»(r.ti). (37) 

Hence, for every unknown pixel spectrum, there must be K angle calculations. The linear architec- 
ture that describes this procedure appears in Figure 28 for the case of four classes, K = 4. Each test 
utilizes the exact same set of bands, and each SAM comparison is performed independently, and 
oblivious to, the other comparisons. A comparator collects every angle measurement and assigns 
the unknown pixel to the class having the smallest angle, or based on additional criteria, leaves the 
pixel unassigned. 

This linear structure, however, is a specific case of a more general, hierarchical architecture 
that appears in Figure 29 for K = 4. Figure 29(b) describes the basic kernel of the architecture. At 
each stage the unknown pixel is compared to only two classes at a time using a set of bands and two 
templates that optimize the current binary test. A comparator rejects from further consideration 
the class having the larger SAM angle, and another binary test is formulated with the retained class 
and a new class, using bands and templates that optimize the new test. The procedure continues 
until only one class remains. Hence, K — \ stages are required, and each stage consists of two angle 
calculations. 

Unlike the linear architecture where the sequence of angular comparisons is irrelevant, the 
generalized architecture is hierarchical and sequences subsequent comparisons based on the outcome 
of the current comparison. The key difference between the architectures in Figure 28 and Figure 
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Figure 28. Linear architecture for material identification with spectral libraries. 

29(a) is that the hierarchical architecture optimizes each binary test with the appropriate bands 
and templates to reveal the most contrast between the two classes. Moreover, the sequencing of 
subsequent tests can be formulated to efficiently arrive at the correct class with a minimum of 
computation. 

5.2    MULTI-CLASS MATERIAL ID WITH HYDICE DATA 

We consider a multi-class experiment using data collected by the HYDICE sensor. Each of 
the classes has corresponding reference measurements taken by a spectroradiometer, from which 

A°oth AiSM and MDM haVG selected bands- We use ten classes (K = 10)> and consequently, 
( 2 )= m = 45 sets of bands and templates are required. Using ground-truth, the locations of full 
pixels from each of the target classes have been verified in the atmospherically compensated sensor 
data. These pixels will serve as inputs to the classifier that utilizes the hierarchical architecture in 
Figure 29(a) and the 45 sets of bands and template spectra for ADM and MDM. 

We chose ten target types that were all similar in their visible appearance, due to the desire 
to camouflage their appearance in the natural environment. The mean spectra for each class based 
on the spectroradiometer measurements is illustrated in Figure 30. Table 17 documents for Forest 
Radiance 1, Run 05, the angular classification results using all spectral bands, the MDM method, 
and the ADM method. For each class, the number of test pixels used is indicated, and then 
the percentage of correct classifications (Pcc) for that class is indicated for each method of band 
selection. Also shown are the average number of bands utilized. When using all bands, an unknown 
pixel requires K SAM angle comparisons in order to be classified. However, for both MDM and 
ADM, K-1 tests are performed that each require two SAM angle computations. For the results in 
Table 17, each SAM angle computation for MDM and ADM utilizes, on the average, only 15 and 
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Figure 29. (a) Hierarchical architecture for material identification with spectral libraries; (b) Kernel for 
binary SAM test using distinct bands and templates. 
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Figure 30. Mean reference spectra for ten target classes from Forest Radiance I, Run 05. 

24 bands respectively. At the bottom of the table, the number of classes for which each of the three 
methods achieves the best/worst performance is provided. For most classes, band selection yields 
better classification performance than using all bands. Table 18 conveys the similar conclusions 
for Forest Radiance 1, Run 16, which like Run 05, was collected at an altitude of 5000 feet. Table 
19 and Table 20 document similar results for Forest Radiance 1, Run 07 and Run 22, respectively, 
which were both collected at an altitude of 10000 feet. 

5.3    DISCUSSION 

The process of selecting bands for MDM or ADM must be done for all possible target pairs to 
be used in the hierarchical classification system in Figure 29. MDM needs a starting pair of bands, 
which requires a search over all inter-class reference pixel pairs and all band pairs. The subsequent 
procedure for adding bands also requires further searches and assessments for candidate bands. 
Likewise, ADM needs a search over all possible band pairs. 

Although Tables 17 and 18 demonstrate that MDM and ADM provides superior classification, 
using all bands gave better results in some cases. Both MDM and ADM are greedy searches that add 
bands until no bands exist that provide additional angular separation. The occasional consequence 
of this strategy is that the selection of bands can terminate prematurely, selecting an extremely 
low number of bands (< 5). In such a case, this set of bands may not provide sufficient robustness 
to target variability, and an alternative may be to re-select bands on a less greedy pathway. 
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Target 
class 

Number 
of pixels 

Pec 
All bands MDM ADM 

1 26 38% 31 31 

2 18 0 6 0 

3 18 56 39 50 

4 21 43 10 33 

5 18 22 44 100 

6 16 63 100 56 

7 266 46 79 94 

8 258 58 98 98 

9 16 50 81 81 

10 16 0 81 6 

Win/Lose 3/6 5/3 4/2 

Avg. no. of bands used 145 (All) 15 24 

TABLE 17. Probability of Correct Classification (Pec) using all bands, MDM, ADM. Data was from HY- 
DICE Forest Radiance I, Run 05, collected at 5000 feet. Win/Lose corresponds to the number of classes for 
which a technique achieves the comparatively best or worst Pec for a class. 

Target 
class 

Number 
of pixels 

Pec 
All bands MDM ADM 

1 16 100% 88 100 

2 18 0 0 0 

3 16 94 100 94 

4 18 100 100 100 

5 25 24 0 8 

6 22 82 100 100 

7 293 70 100 99 

8 166 93 99 93 

9 15 6 73 100 

10 12 0 100 0 

Win/Lose 2/6 5/2 3/2 

Avg. no. of bands used 145 (All) 13 23 

TABLE 18. Probability of Correct Classification (Pec) using all bands, MDM, ADM. Data was from HY- 
DICE Forest Radiance I, Run 16, collected at 5000 feet. Win/Lose corresponds to the number of classes for 
which a technique achieves the comparatively best or worst Pec for a class. 
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Target 
class 

Number 
of pixels 

Pec 
All bands MDM ADM 

1 5 20% 20 20 
2 5 0 0 0 
3 5 60 60 60 
4 6 0 0 0 
5 5 40 0 0 
6 6 33 100 100 
7 67 3 97 91 
8 114 39 93 76 
9 5 0 40 40 
10 7 0 43 0 

Win/Lose 1/5 5/1 2/2 
Avg. no. of bands used 145 (All) 13 25 

TABLE 19. Probability of Correct Classification (Pcc) using all bands, MDM, ADM. Data was from HY- 
DICE Forest Radiance I, Run 07, collected at 10000 feet. Win/Lose corresponds to the number of classes 
for which a technique achieves the comparatively best or worst PCc for a class. 

Target 
class 

Number 
of pixels 

Pcc 
All bands MDM ADM 

1 5 07c 20 20 
2 8 0 0 0 
3 5 20 20 20 
4 5 0 0 0 
5 8 25 0 88 
6 8 88 100 63 
7 78 12 100 94 
8 79 47 92 63 
9 3 67 67 100 
10 6 0 17 0 

Win/Lose 0/5 4/2 3/2 
Avg. no. of bands used 145 (All) 15 24 

TABLE 20. Probability of Correct Classification (Pcc) using all bands, MDM, ADM. Data was from HY- 
DICE Forest Radiance I, Run 22, collected at 10000 feet. Win/Lose corresponds to the number of classes 
for which a technique achieves the comparatively best or worst PCc for a class. 
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In other cases where the number of selected bands was acceptable, the selection of bands 
did not capture discriminating features that were robust enough to enable superior classification. 
Scrutinizing these results may provide additional insight on improved band selection algorithms. 
However, in several cases, it is clear that ADM and MDM failed in the same places that using 
all bands also failed. In such cases, the incorrectly classified pixel may contain artifacts that no 
method would be able to mitigate, without prior knowledge of such a distortion. 

While experiments indicate that they yield better classification performance, ADM and MDM 
are neither uniquely superior, nor optimal. The techniques for selecting bands that have been 
outlined for ADM and MDM are amenable to numerous changes, and these have been discussed in 
detail in previous sections. For instance, the rule for selecting additional bands based on having the 
lowest value of ß can be changed to select bands based on another criterion. The choice of initial 
bands is also another parameter that can be adjusted. Our efforts are intended to explore a few 
sample pathways for selecting hyperspectral bands, based on strong mathematical reasoning and 
repeatable empirical evidence, that convincingly demonstrates that better performance is achievable 
through a prudent selection of bands. 

However, selecting bands that are appropriate to compare two classes leads to the concept 
of partitioning spectral libraries by their corresponding angular relationships. Considering the 
architecture in Figure 29, if an unknown pixel, r, is closer to Class A than Class B, can that 
information rule out consideration of other classes from comparison? The likely answer is yes, with 
a considerable savings in overall computation, and this savings is achieved by, once again, exploiting 
the properties of the metric that performs the comparisons of spectra. 
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5.4    SECTION SUMMARY 

In this section, we extended the capability of discriminating between two target classes, each 
defined by a set of reference spectra, to a hierarchical, multi-class architecture that is suitable for 
material identification with spectral libraries. The basic kernel for the architecture is a binary 
SAM angle test that compares an unknown pixel using bands and template spectra unique to 
the pair of target classes (see Section 4.3.1 and Section 4.3.2). The class with the larger angle 
is excluded from further consideration and a new binary test is created with the retained class 
and one of the remaining classes that employs a distinct set of bands and class templates. This 
hierarchical structure was implemented and compared to the traditional linear architecture in a 
ten-class material identification test using laboratory reference measurements and measured sensor 
data collected with the HYDICE sensor. As the experiments with spectrally similar targets showed 
in Section 4.4, Tables 17 and 18 demonstrate that band selection using ADM and MDM can provide 
superior material identification performance while using only a fraction of the available bands. 
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6.    FURTHER APPLICATIONS 

In Section 4 and Section 5 we employed band selection to increase the angular separation 
between two classes and created a hierarchical architecture for material identification with spectral 
libraries. This approach can be implemented as an independent mechanism for classifying unknown 
pixels that arise from hyperspectral imagery. For instance, material identification can be performed 
upon a single pixel in a scene. Or, endmember spectra that have been extrapolated from a scene can 
be compared to template spectra in a library to ascertain the associated material type. Similarly, 
in a multi-INT environment, material identification can provide complementary physical analysis 
to sensors, such as SAR, that are well-suited to detecting man-made and metallic objects. In either 
case, any individual spectrum may be submitted to a material identification architecture, such 
as the one in Figure 29. The approaches developed in Section 4 and Section 5 can also provide 
payoffs for other hyperspectral applications based on the ability to maximize the amount of contrast 
between two classes and the ability to reduce computation. 

6.1    FALSE-ALARM MITIGATION FOR DETECTION 

Target detection is one of the most important applications of hyperspectral data. In MTI 
(Moving Target Indicator) radar detection, a moving target is declared when the value in a range- 
Doppler cell exceeds a threshold. The magnitude of the return from the moving vehicle will exceed 
that of the surrounding natural background (at the same range-Doppler location) because it will 
produce more backscatter than its natural surrounding. Thus, detecting moving targets with radar 
relies on the difference in backscattering coefficients [25]. 

Detection of hyperspectral targets depends on more than the differences in magnitude. It 
also depends on the difference in shape between the desired target spectrum and the background. 
Section 2.3.3 discussed how statistical detectors for hyperspectral processing are frequently based 
on a measurement of spectral angle. Invariably, any kind of detection involves maximizing the 
probability of detection (Pp) and minimizing the probability of false alarms {PFA)- Perfect de- 
tection is only achieved when a threshold may be set that delineates all target test statistics from 
background test statistics. Figure 31 illustrates target and background test statistic distributions 
that result from a statistical detector and the relationship that a threshold has with Pp and PFA- 

While it was noted in Section 2.3.3 that many statistical detectors are essentially angle-based 
comparisons, the band selection techniques discussed in Section 4 are not directly applicable to im- 
prove detector performance. Statistical detectors extract better detection performance by exploiting 
the statistical covariance between different band values. Consequently, the correlations between one 
band and the remaining bands contribute to the separability between the target and background 
distributions. The important requirement, however, is that the estimate of the background co- 
variance should be a reliable one, and this only occurs when a sufficient number of samples exist 
to gauge the intra-class variability. The relationship between the number of background training 
samples, the number of bands, the amount of target variability has been explored analytically [30]. 
It is important to note that the band selection methods in Section 4 become applicable when there 
are not enough samples to create a covariance and apply traditional statistical pattern recognition 
methods. 
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Figure 31. Notional distributions of background and target detection statistics. 

Statistical descriptions of background variability, however, are rarely sufficient to completely 
distinguish targets and background. Nor is knowledge of the optimal location for the threshold 
always available. Hence, some level of post-detection processing can analyze pixels to minimize 
PFA and maximize PD. As we discussed in Section 5, in many CC&D environments, spectral sig- 
natures of different targets can be very similar. Statistical target detectors, despite their statistical 
optimally, can have difficulty distinguishing between two similar target types, and, consequently, 
lead to a higher PFA. Post-processing detections using the technique in Section 5 is one method of 
refining the results of statistical detectors. 

We can motivate this argument by revisiting the binary classification experiments in Section 
4.4 to correctly discern material X and Y. Provided the mean reference spectra for either class 
in Figure 24(a), any of the statistical detectors discussed in Section 2.3.3 can be employed to 
adaptively detect the presence of the target amid background.   The ACE detector in (16) was 
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Figure 32. ACE detection histograms and target test statistics using Forest Radiance I, Run 05 data: (a) 
The desired target is material X (blue); (b) The desired target is material Y (red). The detector capably 
distinguishes the desired target from background, but is unable to distinguish similar targets. 

run on the Forest Radiance I, Run 05 scene using the mean reference spectra for material X, and 
then again with the mean reference spectra for material Y. Multiple instances of numerous targets 
appear in the scene, and as part of an effort at MIT Lincoln Laboratory to provide canonical data 
sets for testing and evaluation to the hyperspectral community, target and background pixels have 
been scrupulously corroborated with ground-truth measurements. The covariance was estimated 
using only the background pixels and the desired target in the scene. 

The results of the ACE detector when seeking material X appear in Figure 32(a). The green 
histogram represents the distribution of test statistics from the background pixels in the scene. The 
blue lines indicate the test statistics induced by the material X pixels. In red are the statistics for 
the material Y pixels, and they appear mixed with the material X test statistics. Clearly, the ACE 
detector is capable of distinguishing the desired target pixels from the background pixels. However, 
the ACE detector is unable to reject the material Y pixels. A similar result occurs when the ACE 
detector is employed to detect material Y. In both cases, further post-processing on the detector 
output is required to discern targets similar to the desired target, and hence, to reduce false alarms. 
The kind of material identification architecture discussed in Section 5 can be employed to further 
refine the results of statistical detection and provide more precise identification of pixels. 

6.2    DIMENSION REDUCTION 

The most significant challenge in hyperspectral processing is to develop automated techniques 
for exploiting hyperspectral data that achieve optimal performance while processing a minimum 
amount of measured data. Optimal performance is always desirable from an operational viewpoint, 
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but minimizing the amount of data required has numerous practical advantages. First, real-time 
processing is more likely when the amount of data to be processed is minimized, and less latency 
translates into faster application of results to tactical scenarios. Second, the hardware and software 
requirements for on-board or off-line processing are loosened, which results in savings in cost and 
complexity. Finally, the required downlink bandwidth from sensor platforms can be minimized if the 
measured data is appropriately pre-processed to retain only information that is key for subsequent 
applications to succeed. 

Numerous methods have been undertaken to compress hyperspectral data into efficient lower- 
dimensional representations, and they borrow much of their intuition from the large research lit- 
erature devoted to the compression of video imagery. Most of these techniques are centered on 
optimal statistical representations for scenes using principal components analysis [36,45], entropy 
models, and Markov structures [1]. Implicit in most of these approaches is the understanding that 
compression may lead to some degradation in the performance of applications that subsequently 
exploit the uncompressed data. This follows from the parallel logic that uncompressed video im- 
agery, at best, will only be an approximation to the original video sequence, and the quality of the 
reproduction is measured by the human visual system. In hyperspectral processing, however, the 
usefulness of a dimension reduction approach is not measured by visual inspection, but by more 
tangible, mathematical measures of application algorithm performance: PD,PFA,PCC- 

Effective dimension reduction, therefore, must take into account the measure(s) of perfor- 
mance that subsequent processing will utilize. Only then will dimension reduction techniques 
retain information that applications require to succeed. Our efforts to perform band selection have 
been motivated by the desire to increase the performance of algorithms that use SAM in their 
processing. In doing so, Tables 15, 16, 17, and 18 demonstrate that an increase in performance can 
also be accompanied by a dramatic degree of dimension reduction. Compression algorithms whose 
principle objective is dimension reduction, and not algorithm performance, may provide some form 
of statistical optimality, but without any consideration of subsequent processing, algorithms that 
process the reconstructed data will almost invariably underperform. This is especially true for 
military scenarios which possess a wholly different set of standards and requirements than com- 
mercial video processing. So, while dimension reduction was not the intended goal of performing 
angle-based band selection, it is a concomitant by-product that is nevertheless useful. 
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7.    FUTURE WORK 

This project report has documented the importance of a thorough understanding of how 
distance metrics compare two hyperspectral signals. As an example of the benefits, we have explored 
how bands can be selected from hyperspectral signals to yield better application performance while 
using only a fraction of the data collected by the sensor. This capability has important benefits for 
the design of efficient hyperspectral sensing platforms. 

There are numerous opportunities to extend the work in this report, and they are discussed 
in detail in the following sections. 

7.1    BOUNDS ON TARGET VARIABILITY 

In Section 4, bands were selected to increase the angular separation between two classes of 
pixels. Doing this permitted the variability observed in the reference measurements taken by the 
spectroradiometer to be included. However, these samples do not represent the total amount of 
variability that can exist for that target class. As noted before, variability can be introduced by 
the conditions in which the target is observed (e.g., observation angle), the atmospheric conditions, 
sensor artifacts, and the atmospheric compensation algorithm. Combined, the recovered reflectance 
spectra from the scene may deviate significantly from the actual material spectra. 

One way of incorporating the variability of a spectrum is to provide upper and lower bounds 
for the reflectance values at each wavelength for a spectrum that demarcates the acceptable range of 
variability that still defines a material. As an example, Figure 7.1 illustrates a reflectance spectrum 
with two additional spectra that indicate the upper and lower bound on acceptable reflectance 
values for that class. If two classes are defined with upper and lower bounds, a high-dimensional 
volume can be defined describing the range of values for each class, and bands can be selected 
to reduce each class to a lower-dimensional space while increasing the angular separation between 
each class. 

7.2    PHYSICAL MODELS FOR TARGET VARIABILITY 

Another possible way of modelling target variability involves simulating the process by which 
a material reflectance spectrum is first measured by a sensor as a radiance measurement and is 
then converted to reflectance by atmospheric compensation. The initial step of moving to radiance 
can be accomplished by MODTRAN, and the procedure can be repeated with a variety of atmo- 
spheric conditions and viewing geometries. This approach has been used to perform hyperspectral 
processing through forward modelling of reflectance spectra into radiance values [17]. A set of spec- 
tra describing the variability can then be obtained by considering all possible pairs of parameters 
that define the MODTRAN reflectance-to-radiance procedure and the corresponding atmospheric 
compensation. The recovered reflectance estimates of the original spectrum will then demonstrate 
the variability that exists when the two procedures are mismatched. 
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Figure S3. Mean reflectance spectrum for a class with upper and lower bounds. 

7.3    FAST ARCHITECTURES FOR SPECTRAL LIBRARIES 

In a typical scenario, a spectral library may contain hundreds, even thousands, of spectral 
signatures. Therefore, the ability to rapidly assign a class label to an unknown pixel becomes a 
challenge for real-time operation. Band selections for pairs of classes can be calculated off-line and 
then recalled as needed in the material identification architecture given in Figure 29. We have 
already demonstrated that band selection invariably leads to dimension reduction, and in most 
cases, the reduction in bands is significant, thus providing a significant decrease in computation. 

In addition, another source of computational savings can be exploited from a spectral library. 
In a comparison between two classes, the locus of points residing exactly halfway between the two 
templates provides a partition in high-dimensional space between the two classes. An unknown 
pixel will necessarily fall on one side of the partition, ruling out the other class from consideration. 
By virtue of the triangle inequality possessed by valid distance metrics, it is possible to rule out 
other classes that also fall on the other side of the partition. Thus, for each pair of classes, a list of 
classes that reside on each side of their partition can also be stored, in addition to the bands that 
optimize their comparison. 

7.4    ALTERNATIVE COST FUNCTIONS 

In Section 2.4, the possibility of other distance metrics and cost functions was considered. 
While few candidates have appeared, the possibility of optimizing other cost functions for hyper- 
spectral processing through band selection still exists. Our efforts have been focused on distance 
metrics because they provide the foundation for many hyperspectral algorithms. The key factor 
in evaluating whether a performance measure can be optimized is determining its mathematical 
properties in the way that the properties of SAM and EMD were enumerated in Table 1. 

72 



7.5 TUNABLE SENSING 

The ability to identify which bands provide increased discrimination between two classes 
directly impacts what subset of data collected by a sensor is to be processed. It also has the potential 
to impact what data is collected by the sensor, if the sensor can be tuned to collect only certain 
spectral intervals. Electronically tunable filters (ETFs) have utilized sophisticated technologies 
based on liquid crystal technology, acousto-optic filters, and Fourier transform spectrometers (FTS) 
[14]. They require, as inputs, the boundaries of the spectral intervals in which they are to collect 
measurements. A band selection analysis can be adapted to the practical characteristics of a tunable 
sensor to enable measurements in only spectral intervals that yield the desired discriminability. 

7.6 ANGULAR INFORMATION THEORY 

Since the angle between two hyperspectral signals can be decomposed into a virtually infinite 
number of sub-angles, an interesting question is where the information requisite for applications 
to succeed resides in terms of the associated sub-angles? Just as information theory [37] provided 
bounds on noise and efficiency for reliable digital communications, there may exist bounds on the 
spatial and spectral resolution and sensor performance necessary to meet a prescribed performance 
bound. 
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8.    SUMMARY 

In this report, we have derived practical benefits for hyperspectral processing from a thorough 
mathematical and physical understanding of distance metrics. Most importantly, we have employed 
a technique for band selection based on mathematical principles to improve the performance of 
applications that use the Spectral Angle Mapper (SAM) to compare two spectra. Starting with 
the task of selecting bands to increase the angle between two spectra, we proceeded to extend 
the approach to select bands that increase the angular separation between two classes of pixels. 
The strong parallelism between this capability and the problem of material identification using 
spectral libraries was highlighted. Many examples with spectrally similar targets used for CC&D 
demonstrated the ability of band selection to provide better classification performance while using 
only a fraction of the available bands, thereby yielding significant benefits for dimension reduction. 

Perhaps the most important by-product of this report is the confirmation that significant 
performance gains (e.g., Pec, PD, PFA, computational speed, throughput) can be achieved by a 
thorough mathematical understanding of the algorithms and operators that are employed to process 
hyperspectral data. In the case of SAM, we exploited a single property, its non-monotonicity, 
to achieve gains in classification performance, dimension reduction, and robustness, and we also 
recognized the applicability of the band selection algorithm to the material identification problem. 
Similar gains may be possible in other areas, but they will also require a significant exploration 
of the mathematical behavior, as well as the realistic physical limitations, that underscore the 
problem. 

The gains made in reducing the dimension of the data were by-products of an optimization 
that focused on maximizing angular separation, and thereby, the overall performance. Optimiza- 
tions that place a priority only on dimension reduction (or compression) will almost surely lead to 
a degradation in algorithm performance. So, while optimizations of end-performance are invariably 
more complex than straightforward, statistical compression techniques (e.g., PCA, JPEG), they 
are more likely to deliver better performance for the application for which they are optimized. 

There are numerous extensions to the research presented in this report. The few methods 
for band selection techniques presented are only examples from a general framework based on 
a mathematical decomposition of SAM. There must also exist many other approaches. Section 7 
outlines some of the extensions involving most sophisticated physical modelling of target variability, 
as well as numerous opportunities to streamline the architecture of spectral libraries. Likewise, 
band selection can provide the inputs to tunable sensors, thus minimizing not only the data to be 
processed, but the data to actually be collected. 
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ACRONYMS 

ACE Adaptive Cosine/Coherence Estimator 

ADM Average Distance Method 

AMF Adaptive Matched Filter 

ATREM Atmosphere Removal Program 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

BAO Band Add-On 

CC&D Camouflage, Concealment, and Deception 

DUSD Deputy Under Secretary of Defense 

ETF Electronically Tunable Filter 

EMD Euclidean Minimum Distance 

ESM Exemplar Selector Module 

FTS Fourier Transform Spectrometers 

GLRT Generalized Likelihood Ratio Test 

HSI Hyperspectral Imaging 

HTAP Hyperspectral Technology Assessment Program 

HYDICE Hyperspectral Digital Imagery Collection Experiment 

HYMSMO Hyperspectral MASINT Support to Military Operations 

LMM Linear Mixing Model 

LSE Least Squares Error 

MAP Maximum a Posteriori 

MDM Minimum Distance Method 

ML Maximum Likelihood 

MSE Mean Squared Error 

MTI Moving Target Indicator 

ORASIS Optical Real-time Adaptive Spectral Identification System 
PCA Principal Components Analysis 

Pec Probability of Correct Classification 

PD Probability of Detection 

PDF Probability Density Function 

PFA Probability of False Alarm 

RF Radio Frequency 

SAM Spectral Angle Mapper 

SeaWIFS Sea-viewing Wide Field-of-view Sensor 

SNR Signal to Noise Ratio 
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